
If you’re like me, you bare-
ly squeaked by in whatever
math class you took last. If
you’re like two of the best pro-
grammers I’ve ever worked
with, you failed your last math
class miserably, dropped out
of school and got a job writ-
ing code. Or maybe you enjoy
math and statistics, in which
case I’m happy for you and
encourage you to put that
enjoyment to practical use when designing
and reporting on software tests. 

Whatever your particular situation is,
I’m starting to feel like a math and sta-
tistics teacher. As a whole, it seems to me
that members of software development
teams, developers, testers, administrators
and managers alike have an insufficient
grasp on how to apply mathematics or
interpret statistical data on the job. 

As an example, I just finished another
several-hour discussion with someone
claiming to understand statistical princi-
ples who believed that a data set including
five response-time measurements and a
standard deviation roughly equal to the
mean was statistically significant. The dis-
cussion reminded me that as performance
testers, we not only must know and be able
to apply certain mathematical and statisti-
cal concepts, we must also be able to teach
them. Worse, we often have to teach these
concepts to people who like math even less
than we do. Over the years I’ve stumbled
upon some relatively effective explanations
for the mathematical and statistical prin-
ciples I most often use as a performance
tester. I’d like to share them with you.

Averages
Also known as arithmetic mean, or mean for
short, the average is probably the most com-

monly used and most com-
monly misunderstood statis-
tic of them all. Just add up all
the numbers and divide by
how many numbers you just
added—what could be sim-
pler? What most folks don’t
realize is that if the average
of 100 measurements is 4,
that could imply one quarter
of those measurements are 3,
half are 4 and another quar-

ter are 5 (we’ll call this data set A)—or it
could mean that 80 of those measurements
are 1 and the rest are 16 (data set B). If
we’re talking about response times, those
two sets of data have extremely different
meanings. Given these two data sets and
a response time goal of 5 seconds for all
users, looking at only the average, both
seem to meet the goal. Looking at the data,
however, shows us that data set B not only
doesn’t meet the goal, it also probably
demonstrates some kind of performance
anomaly. Use caution when using averages
to discuss response times, and, if at all pos-
sible, avoid using averages as your only
reported statistic.

Percentiles
Not everyone is familiar with what per-
centiles represent. It’s a straightforward
concept easier to demonstrate than
define, so I’ll explain here using the 95th
percentile as an example. If you have 100
measurements ordered from greatest to
least, and you count down the five largest
measurements, the next largest meas-
urement represents the 95th percentile
of those measurements. For the purpos-
es of response times, this statistic is read
“Ninety-five percent of the simulated
users experienced a response time of this
value or less under the same conditions

as the test execution.”
The 95th percentile of data set B above

is 16 seconds. Obviously this does not give
the impression of achieving our five-sec-
ond response-time goal. Interestingly, this
can be misleading as well: If we were to look
at the 80th percentile on the same data set,
it would be one second. Despite this pos-
sibility, percentiles remain the statistic that
I find to be the most effective most often.
That said, percentile statistics can stand
alone only when used to represent data
that’s uniformly or normally distributed
and has an acceptable number of outliers.

Uniform Distributions 
Uniform distribution is a term that repre-
sents a collection of data roughly equiv-
alent to a set of random numbers that
are evenly distributed between the upper
and lower bounds of the data set. The
key is that every number in the data set
is represented approximately the same
number of times. Uniform distributions
are frequently used when modeling user
delays, but aren’t particularly common
results in actual response-time data. I’d
go so far as to say that uniformly distrib-
uted results in response-time data are a
pretty good indicator that someone
should probably double-check the test
or take a hard look at the application.

Normal Distributions
Also called a bell curve, a data set whose
member data are weighted toward the
center (or median value) is a normal dis-
tribution. When graphed, the shape of the
“bell” of normally distributed data can
vary from tall and narrow to short and
squat, depending on the standard devia-
tion of the data set; the smaller the stan-
dard deviation, the taller and more nar-
row the bell. Quantifiable human activi-
ties often result in normally distributed
data. Normally distributed data is also
common for response time data. 

Standard Deviations
By definition, one standard deviation is
the amount of variance within a set of
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measurements that encompasses approx-
imately the top 68 percent of all meas-
urements in the set; what that means in
English is that knowing the standard devi-
ation of your data set tells you how dense-
ly the data points are clustered around
the mean. Simply put, the smaller the
standard deviation, the more consistent
the data. To illustrate, the standard devi-
ation of data set A is approximately .7,
while the standard deviation of data set
B is approximately 6. Another rule of
thumb is this: Data with a standard devi-
ation greater than half of its mean should
be treated as suspect. 

Statistical Significance
Mathematically calculating statistical sig-
nificance, also known as reliability, based
on sample size, is not only  beyond the
scope of this column, it’s just plain com-
plicated. Luckily, you can get usually get
away with skipping the math by applying
some common sense. Since it’s typically
fairly easy to add iterations to your tests
to increase the total number of meas-
urements collected, the best way to
ensure statistical significance is simply to
collect additional data if you have any
doubt about whether or not the collect-
ed data represents reality. Whenever pos-
sible, ensure that you collect at least 100
measurements from at least two inde-
pendent tests. In support of the common-
sense approach described below, check
out this excerpt from a StatSoft, Inc.
(www.statsoftinc.com) discussion on the
topic from StatSoft,
(www.statsoftinc.com), a company that
provides analytic software:

There is no way to avoid arbitrariness
in the final decision as to what level of sig-
nificance will be treated as really ‘signifi-
cant.’ That is, the selection of some level
of significance, up to which the results will
be rejected as invalid, is arbitrary. In prac-
tice, the final decision usually depends on
whether the outcome was predicted a pri-
ori or only found post hoc in the course
of many analyses and comparisons per-
formed on the data set, on the total
amount of consistent supportive evidence
in the entire data set, and on ‘traditions’
existing in the particular area of research...
But remember that those classifications
represent nothing else but arbitrary con-
ventions that are only informally based

on general research experience.
While there’s no hard-and-fast rule

about how to decide which results are
statistically similar without complex equa-
tions that call for volumes of data, try
comparing results from at least five test
executions and apply these rules to help
you determine whether or not test results
are similar enough to be considered reli-
able if you’re not sure after your first two
tests:

1. If more than 20 percent (or one out
of five) of the test exe-
cution results appear
not to be similar to the
rest, something is gen-
erally wrong with
either the test envi-
ronment, the applica-
tion or the test itself.

2. If a 95th percentile
value for any test exe-
cution is greater than
the maximum or less
than the minimum
value for any of the
other test executions,
it’s probably not sta-
tistically similar.

3. If measurement from
a test is noticeably
higher or lower,
when charted side-
by-side, than the
results of the rest of
the test executions,
it’s probably not sta-
tistically similar.

4. If a single measure-
ment category (for example, the
response time for a specific object)
in a test is noticeably higher or low-
er, when charted side-by-side with
all the rest of the test execution
results, but the results for all the rest
of the measurements in that test are
not, the test itself is probably sta-
tistically similar.

Statistical Outliers
If we were to ask statisticians what an
outlier is, they would tell us that it’s any
measurement that falls outside of three
standard deviations, or 99 percent, of
all collected measurements.  The prob-
lem with this definition in our case is
that it assumes that our collected meas-

urements are statistically significant and
are distributed normally—which is not
nearly as common as we’d like for
response times.

A more applicable definition of an out-
lier can be found in StatSoft’s glossary: 

Outliers are atypical (by definition), infre-
quent observations; data points which do not
appear to follow the characteristic distribution
of the rest of the data. These may reflect gen-
uine properties of the underlying phenomenon
(variable), or be due to measurement errors or

other anomalies which should
not be modeled.

Based on this definition,
I recommend that if you see
evidence of outliers—occa-
sional data points that just
don’t seem to belong—re-
execute the tests and com-
pare them to your first set.
If the majority of the meas-
urements are the same, plus
or minus the potential out-
liers, the results are likely to
contain genuine outliers
that can be disregarded, but
if the results show similar
potential outliers, these are
probably valid measure-
ments that deserve consid-
eration.

The next question is,
“How many outliers can we
dismiss as ‘atypical infre-
quent observations’?”   

Assuming we’ve made
the determination that we
have collected a statistical-

ly significant sample of measurements,
we can address this question. I submit
that there is no set number of outliers
that can be unilaterally dismissed, but a
maximum percentage of the total obser-
vations should do as a rule of thumb. 

If we apply the spirit of the two defi-
nitions that we have discussed, we come
to the conclusion that up to 1 percent of
the total measurements beyond the third
standard deviation are significantly out-
side the rest of the measurements and
can be considered outliers.

I hope you find this useful in educat-
ing the folks who view your results as to
what those results truly represent, so they
can make informed decisions about the
application’s performance. ý
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