
Beyond
Performance
Testing

by:

R. Scott Barber

Part 5: Determining the Root Cause of Script
Failures

In  the  forums  on  performance  engineering  that  I  participate  in  and 
moderate, I get questions like these almost daily:

• “I recorded my script and it worked just fine for one user, but when I 
tried two users they both failed. What’s wrong with my Web server?”

• “My scripts pass but the database doesn’t get updated. What’s wrong 
with my database?”

• “My scripts work for five users, but when I play back more than ten 
users my scripts time out. Is my application overloaded already?!”

In  each  case,  the  author  assumes  that  since  the  script  passed  in  some 
scenarios,  or  since  the  Rational® TestManager  software  showed  a  Pass 
result,  the problem must be with the application. While it’s true that the 
application isn’t performing as expected and while it may be true that the 
application is at fault, “appearances often are deceiving,” as Aesop (620–
560 BC) warned. An application can act in unexpected ways because scripts 
present it with situations that real users could never create. 

Besides, the obvious symptom is very rarely the actual cause of a script 
failure. Here in the fifth article of the “Beyond Performance Testing” series, 
we’ll take a look at how to analyze script failures with the intent of finding 
their  root  cause  so  we  can  debug our  scripts  effectively  and then  build 
stable, robust, reusable scripts to test our applications with. We’ll explore 
some common scripting issues that can cause failures (both true failures and 
false failures) and I’ll show you some methods for collecting information 
about script failures.

So far, this is what we’ve covered in this series:

Part 1: Introduction 

Part 2: A Performance Engineering Strategy

Part 3: How Fast Is Fast Enough?

Part 4: Accounting for User Abandonment

This article is intended for all levels of Rational TestStudio® VU scripters.

Recognizing and Minimizing False Failures (and 
Passes)
In the Test Log for a VU script, TestManager classifies executed commands 
as  having  either  passed  or  failed,  but  these  classifications  don’t  always 

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006             1

http://www.perftestplus.com/resources/BPT1.pdf
http://www.perftestplus.com/resources/BPT4.pdf
http://www.perftestplus.com/resources/BPT3.pdf
http://www.perftestplus.com/resources/BPT2.pdf


mean what you might assume they do. Some of the Fail  results that show up there aren’t actually 
indicative of problems with the script or application and can be prevented by adjusting HTTP return 
code or file size parameters. By the same token, some of the Pass results that appear actually mask 
critical  errors.  We’ll  consider  how  to  minimize  these  false  failures  and  passes  first.  You  should 
evaluate these areas when developing your scripts as well so you don’t waste time troubleshooting in 
other areas only to find out that you’ve been misled by the Test Log. 

Failures Based on HTTP Return Codes

HTTP return codes are sent back to the client for each object retrieved from the Web server when you 
record a script. These are the code numbers you’ll see in the http_header_recv lines of each block 
that look like the following:

http_header_recv ["script~1.017"] 200;    /* OK */
http_header_recv ["script~1.025"] 304;    /* Not Modified */
http_header_recv ["script~1.042"] 302;    /* Moved Temporarily */
By default, when you play back your scripts TestManager expects to get that same code when the same 
object is requested and will only classify the executed command as having passed if that’s the case. 
This can be either a good thing or a bad thing. It’s a good thing in that you won’t get a passing result if 
you’re expecting a 200 (OK) and you get a 404 (File Not Found). On the flip side, if you’re expecting a 
200 (OK) and you get a 304 (Not Modified) — which implies that the request was filled from the cache 
— you get a failure. In most cases this will be a false failure, because you do want to be able to retrieve 
objects from the cache. 

You can help eliminate some of these false failures by changing the defaults to allow redirects (301, 
302, and possibly 303 in place of an expected 200 or 304) and/or cache responses (304 in place of an 
expected 200, 301, 302, or possibly 303). There are a couple of ways to do this. One way is to modify 
the  push HTTP_control line in each script to include the  HTTP_CACHE_OK parameter if you want to 
allow cache responses and the  HTTP_REDIRECT_OK parameter  if  you want  to  allow redirects.  That 
modification has been made to the line below.
push Http_control = HTTP_CACHE_OK | HTTP_REDIRECT_OK;
Alternatively, through TestManager you can modify the parameters for all of the scripts in a suite at 
once. (Note that these changes will only affect scripts when they’re played back as a part of that suite.) 
First, open the desired suite and choose Suite > Edit Settings from the menu bar. You’ll see a screen 
like the one in Figure 1.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         2

http://www.cknow.com/ckinfo/def_h/httpreturncodes.shtml


Figure 1: Settings screen for a suite
Then click the TSS Environment Variables button for all user groups (indicated by the red arrow in 
Figure 1) and click the VU HTTP tab. This brings you to the screen in Figure 2.

Figure 2: VU HTTP tab, TSS Environment Variables dialog box (default)

You can see that the default is to not allow the HTTP Control options. To change that, simply check the 
desired boxes, as shown in Figure 3.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         3



Figure 3: VU HTTP tab, TSS Environment Variables dialog box (modified for return codes)

False passes based on HTTP return codes can also be a problem during playback. Sometimes, for 
example, a 200 is both expected and received, but in fact what’s been received is the wrong thing. For 
instance,  when  you  click  a  link  and  get  a  message  that  says  “I’m  sorry,  the  site  is  down  for 
maintenance, please come back tomorrow,” you’ve received a valid page with a 200 code, but you 
haven’t received the page you were looking for. In general, detecting false passes is a matter of spot 
checking responses. Pages with embedded error messages are discussed in more detail below.

Failures Based on File Sizes

File sizes are another way that TestManager determines if a request passed or failed during playback. 
In your scripts you’ll see lines like the following:

http_nrecv ["script~1.003"] 100 %% ; /* 56304 bytes */
http_nrecv ["script~1.006"] 100 %% ; /* 2103 bytes - From Cache */
http_nrecv ["script~1.012"] 2048;    /* 2048/2048 bytes */
While there are several variations on how file sizes are evaluated for correctness during playback, they 
really boil down to either allowing response sizes to vary or not. In the first case, you ensure the script 
shows 100%%; downloading a file of any size bigger than 0 bytes counts as a Pass. In the second case, 
you ensure the values in the command match the number of bytes when recorded; any file  that’s 
downloaded with a size different from that number of bytes counts as a Fail. 

In most cases, allowing response sizes to vary will keep you from getting tons of false failures, since 
anything dynamic on an HTML page — even if you can’t see it on the screen — can cause the file size 
to change and thus a failure to occur if responses sizes aren’t allowed to vary. You may choose to 
dictate  specific  sizes  for  certain  graphics  or  screens  if,  for  example,  you  know  that  the  correct 
screen/graphic will always be one size and that the error screen/graphic will always be a different size.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         4



Other than modifying the code line by line, you can set the parameter globally like we did for the 
HTTP  return  codes  above.  For  an  individual  script,  you  can  do  this  by  adding  or  deleting  the 
HTTP_PARTIAL_OK parameter in the  push HTTP_control line. For an entire suite,  you can do this 
through TestManager by returning to the VU HTTP tab of the TSS Environment Variables dialog box 
and checking or un-checking the “Allow partial responses” option (see Figure 4). Once again, this is a 
useful tool to help minimize false passes and fails.

Figure 4: VU HTTP tab, TSS Environment Variables dialog box (modified for sizes)

Passes Returned for Embedded Errors
Embedded errors are those red words on a page that’s substituting for the page you actually want, 
telling you that you failed to get to the page you were looking for. So instead of the Web server 
returning a 403 or 404 error, it redirects you to a custom error page that tells you why your request 
didn’t work. These pages are generally thought of as user friendly, but they’re also performance test 
scripter unfriendly. As mentioned above, TestManager (and virtually all other load-generation tools) 
expects errors in code, not text.

The bottom line is this: embedded errors are very good at presenting results that, on the surface, appear 
to be passing results, when in fact your script is just being redirected to the same custom error page 
over and over again. One indicator that this may be occurring during your test execution is that page 
response times are  much faster  than expected and don’t  seem to slow down even under relatively 
extreme loads.

Embedded errors really deserve an article all their own, but allow me to at least explain conceptually 
how to detect and handle them. We’ll discuss other methods of detecting this issue later. If you have an 
application that uses embedded errors rather than HTTP return codes to signify errors, you’ll have to 

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         5



write custom functions to read the actual HTML of the response from the _response file and look for 
those error messages. If your custom function finds one of those error messages, it must return an error 
using the testcase command and/or terminate the virtual user with the user_exit command. These 
concepts  have  been  presented  previously  in  different  contexts  in  several  “User  Experience,  Not 
Metrics” and “Beyond Performance Testing” articles.

Addressing Common Causes of Script Failures
Now we’ll look at some common scripting issues that can cause real failures: datapools, navigation, 
data correlation, and authorization/authentication. I’ll suggest ways to approach script failures when 
any of these issues might be the cause.

Datapools

Datapools, particularly when used for user names and passwords, often cause script failures that are 
deceiving. Without going into detail about creating or maintaining datapools, I do want to point out 
these key areas to verify when a script failure occurs:

• Ensure that in the datapool section of the script, the variables you want to be read from the datapool 
are marked as INCLUDE, not EXCLUDE. This is a very easy mistake to make.

• Ensure that the data in the datapool is correct. 

• Ensure that you have enough data or you specify DP_WRAP_OFF if overlapping/duplicate data is a 
potential issue. 

Remember always to check the request(s) before the first identified failure to verify input data. It often 
takes several requests past the actual script error to generate an error that TestManager recognizes as a 
failure. If you’re unsure how to check what data was actually passed to the application for a particular 
virtual user, see the sections below under “Collecting Information About Script Failures.”

Navigation

If you’re using split scripts of any sort, you can end up with some extremely strange-looking errors that 
turn out to be the result of requesting pages in the wrong order. This can even happen with entire-path 
scripts when previous requests don’t process properly. If you suspect that navigation could be involved 
in an error at either the script or the application level, I suggest the following approach:

• Ensure that the navigation path your virtual user is following is valid by testing it manually. 

• Ensure that the last page that showed a Pass result in TestManager is the correct page and has the 
correct content (see “Viewing Returned Pages After the Test Run” for how to do this).

• Ensure that the data being passed in the request for the failing page is both correct and properly 
formatted (see “Viewing Native Logs” for how to do this).

• Step through the script one page at a time, evaluating both requests and responses, until you can 
narrow down the cause of error to one request/response pair (see “Stepping Through Scripts” for 
how to do this). 

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         6



A significant majority of errors appear on the surface to be navigation related. The ones that actually 
turn out to be navigation related are usually due to either split scripts or the application. Even though 
issues related to split scripting are fairly common, they’re beyond the scope of this article.

Data Correlation

Data  correlation  is  another  area  that  commonly  leads  to  both  script  and  application  errors.  Data 
correlation is just a fancy term for “I need to grab some data from the last page that changes every time 
someone accesses that page.”  Part  11 of the “User Experience, Not Metrics” series discussed data 
correlation as it relates to authentication and session tracking. 

Data correlation issues are often fairly difficult to detect. By default, Robot doesn’t correlate any values 
during script generation. This may or may not be acceptable for your application. If you record a script 
and it  doesn’t  work,  I  recommend regenerating that  same script  with the  recording options  set  to 
correlate values. First go to Tools > Session Record Options, click the Generator per Protocol tab, and 
change the “Correlate variables in response” item to “All” (see Figure 5). 

Figure 5: Generator per Protocol tab, Session Record Options dialog box
Then regenerate the script in Robot by going to Tools > Regenerate Test Scripts from Session.

If the script works this way, you have two options. The first is to leave it as is and the second is to 
evaluate exactly which variables need to be correlated for the script to work properly. The latter is a 
tedious process no matter how you do it and is beneficial only if (1) conserving small amounts of script 
overhead is more important than hours of your time, or (2) making your code look “clean” is very 
important.   The  one  good  thing  about  data  correlation  issues  is  that  they  almost  always  present 
themselves the first time the script is run. The script will almost never pass, even with a single virtual 
user, if you have a data correlation issue.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         7

http://www.perftestplus.com/resources/UENM11.pdf


Authorization/Authentication
Authorization and/or authentication issues are really just special cases of datapool and data correlation 
issues. All I want to add here is a list of some common indicators that an error may be related to either 
authorization or authentication:

• The logon page appears, but every subsequent page yields an error for one or more virtual users.

• The HTTP return code on the failing pages is either 401, 403, or any code in the 500s.

• The script seems to be working, but back-end data isn’t being updated.

• The script seems to be working, but searches are returning no data when you know the data exists 
and the request for data is formatted correctly.

In these cases, first make sure that all of your user credentials are valid for the actions you’re assigning 
users to. Next ensure that all session identification information is being correlated properly (see Part 11 
of the “User Experience, Not Metrics” series for more information). Finally, get the member of the 
development team who’s responsible for security involved. Security can be done so many different 
ways that it’s simply impossible for me to make further generalizations about how to debug these 
issues.

Collecting Information About Script Failures
There are probably more ways to collect information about performance script failures than there are 
performance testers in the world. Needless to say, there’s simply no way I can discuss all of them in 
this article. Besides, it would be terribly dishonest of me to lead you to believe that I know them all — 
or even most of them! What I can do, however, is discuss some of the common methods at our disposal 
through TestManager plus a few custom methods that aren’t native to TestManager, some of which you 
may be familiar with if you’ve used other industry-leading tools. 

Please note that although I’m going to discuss only information available through TestManager, I’m 
not advocating ignoring other sources of information. On the contrary, I strongly encourage you to use 
all sources of information available to you, which may include but not be limited to the following:

• Web server logs

• application server logs

• network or application monitoring software

• database logs and/or queries

• system admins/developers

• system documentation

• RFC documentation

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         8

http://www.perftestplus.com/articles/uenm11.pdf


Viewing Native Logs

By default, TestManager captures and saves in log files all of the request and response data transmitted 
during a script execution. While the logging settings can and should be changed (on the Logging tab of 
the TSS Environment Variables dialog box) after scripts are fully developed and large loads are being 
simulated, the default settings are correct for determining the cause of script failures. If you’re already 
familiar with these logs, feel free to jump to the next section. 

These log files can be viewed in two different ways. The first way is to right-click a Fail (or a Pass) 
result in the Test Log in TestManager and then choose Properties (see Figure 6).

Figure 6: Test Log window in TestManager

Clicking on the Virtual Tester Associated Data tab will show you the view demonstrated in Figure 7.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         9



Figure 7: Virtual Tester Associated Data tab of Log Event window

As you can see in this case, the emulation command failed because TestManager was expecting an 
HTTP return code of 200 but received a return code of 500 instead. Viewing the logs this way allows 
you to easily navigate between requests and responses associated with a specific virtual user. Clicking 
the General tab gives you all of the information to identify that virtual user and the specific command 
ID for the request or response you’re viewing. All of the information that’s viewable through this 
interface in TestManager is stored in flat files in the project repository, which brings us to the other 
way to view these logs.

The second way to view native logs is to open the files that hold the data presented in the TestManager 
interface directly. Those files are located in the following directory:
[Drive]:\[RepositoryName]\TestDatastore\TMS_Builds\[BuildName]\[SubBuild]\
[TestRun]\perfdata\
Three types of log files may be included in that directory:

• d00# — file(s) containing most of the data viewable in TestManager, one for each VU

• e00# — file(s) containing script execution errors, one for each VU

• o00# — file(s) containing custom output (discussed in the next section), one for each VU

(Note that unless you’ve edited your scripts to provide custom output, you won’t find any o00# files in 
the directory.) To view any of these files directly, simply right-click, select “View With” (or “Open 
With” in XP), and select your favorite text editor (Notepad, Wordpad, and MS Word all work fine, 
though  sometimes  the  files  are  too  big  for  Notepad’s  buffer).  While  you  won’t  find  any  new 
information in these files, it does present the information in a format that lends itself to searching, 
copying and pasting, and such. I use both viewing methods, depending on what I’m looking for.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         10



Creating Custom Output

Creating custom output is a powerful yet simple way to evaluate what’s really happening in a script. 
The easiest way to demonstrate custom output is with an example. 

Let’s say you have a script that logs a user on to your site, navigates content for a while, and logs off. 
Your script works just fine for one user, but at a hundred users you realize that 6% of your users are 
failing to log on. You suspect that six of the user names in your datapool are invalid, but you don’t 
know which ones. You start scrolling through the test logs to find out which users got the logon error, 
then start reading through the request data to see which user names they have. This is a rather tedious 
process, as you can imagine.

The alternative is to create custom output. Immediately following the  stop_time command for your 
logon page (arbitrary decision), place the following line of code:
printf("Virtual  User  #  "+  itoa(_uid)  +"  was  username  "+datapool_value(DP1, 
'username'));
Then  compile  the  script  and  run  it  again.  Upon  completion,  you’ll  find  100  o0# files  in  the 
./perfdata/ directory. Each one of these files will contain text like this:
Virtual User # 17 was username Jamet
A quick glance at the User Start (User Group… line that you had to expand to see the individual 
command failures in the Test Log will show you which virtual user numbers were associated with the 
six failures. Luckily enough, you’ll notice that the o0# file for virtual user #17 is o017. So all you have 
to do is open the o0# file that matches the virtual user number associated with the failed log on, and 
you’ve got the user name that you can now test manually in order to see if it was the cause of the error. 
In our example, the user name was supposed to be Janet, not Jamet.

Though this is a simple example, I’m sure you can immediately see how this kind of custom output can 
be extremely useful in debugging scripts — especially scripts with custom code, variables, and match 
statements like we’ve discussed in previous articles.

Viewing Returned Pages After the Test Run

One of the most frequent questions I get while demonstrating or teaching VU scripting in Robot is 
“How do I see the pages to know if they came back correctly?” In fact, I remember asking that question 
myself not too awfully many years back. While the technique I’m about to share with you for viewing 
HTML pages returned during a  performance test  run after  that  test  has  been completed is  a  little 
tedious, it’s quite simple and I use it all the time while debugging scripts. I suggest that you follow 
along by doing this exercise with me.

• Launch Notepad and Internet Explorer, then return to TestManager.

• Identify the page you want to view in the Test Log (generally by clicking a Timer Start or Timer 
End to view the timer name and verify it’s the page you want).

• Within that timer, there will be several Emulation Command and Env Variable Change entries. 
Click each one and look at the Virtual Tester Associated Data tab in the resulting dialog box to find 
the emulation command containing the main HTML of the page, normally starting with  <head> 
(see Figure 8). This is generally (though not necessarily) the second emulation command after the 

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         11



Timer Start entry. The first emulation command after the Timer Start entry is usually the request 
and the second is usually the response containing the main HTML.

Figure 8: Virtual Tester Associated Data tab for an HTML page

• Click somewhere inside the display box containing the HTML, then press CTRL+A to select all of 
the text and CTRL+C to copy it.

• Navigate to Notepad and click the text area. If there’s text there, press CTRL+A to select the text 
(you can omit this step if this is a new file), then press CTRL+V to paste the text from the Test Log 
into Notepad. 

• Press  CTRL+S to  save  the  file.  When  you  do  this,  be  sure  to  save  it  with  a  .htm or  .html 
extension. I usually just name the file tmp.htm and save it to the root directory of my C:\ drive.

• Navigate to Internet Explorer. On the menu bar, choose File > Open. Browse to the file you just 
saved and click OK. The Web page (minus graphics) will appear in your Web browser. 

Figure 9 shows part of a PeopleSoft 8.4 data entry screen that was viewed in this fashion.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         12



Figure 9: Web page generated from the Virtual Tester Associated Data 

This page isn’t very pretty, but I’m sure you can see its usefulness. Even if you don’t know PeopleSoft, 
you can see that this display gives you enough information to tell  if  (1) the correct page is being 
displayed, (2) the fields are being populated with the correct data, and (3) an error message is being 
displayed on the page.

As a  rule  of  thumb,  I  generally  find pages  that  generate  a  Fail  result  (or  that  I  suspect  of  being 
incorrect) and view those pages first. Often such a page isn’t very informative, as it typically shows 
“404 — File Not Found” or something similar. Then I start moving up the Test Log one page at a time 
looking at the immediate previous pages and searching for possible causes of the error. Very often, the 
page or two immediately preceding an error that generates a Fail in the Test Log holds the actual cause 
of the error.

Take the example of entering bad data into a field. If your application validates data and you enter bad 
data and then try to force the application to bring up a subsequent page, it will return an error instead. 
This is correct behavior on the part of your application but looks like an application error. While you 
could detect this error by trying to find it in the code or viewing the information directly in the Test 
Log, it’s a lot easier to see the error in a browser. 

For instance, in Figure 9 you can see that the “From Period” and “To Period” values are both 1. Having 
the same values in both fields causes a 500 error on the next page. Listing 1 is a (small) snippet of the 
code surrounding the bad value in the script.

re2unx23_fhlmc_com_13 = http_request ["gl_nVis~2.007"] str_url, 
 (ssl),
"POST /psc/"+ str_instance +"/EMPLOYEE/ERP/c/FM_GL_RPT.FM_RUNSQR_FMGL0035.GBL
 HTTP/"
  "1.1\r\n"
  "Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, applicat"
  "ion/vnd.ms-powerpoint, application/vnd.ms-excel, application/msword, */"
  "*\r\n"

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         13



  "Referer: "+ str_referer +"\r\n"
  "Accept-Language: en-us\r\n"
  "Accept-Encoding: gzip, deflate\r\n"
  "Content-Type: application/x-www-form-urlencoded\r\n"
  "User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0; T312461)"
  "\r\n"
  "Host: "+ str_url +"\r\n"
  "Content-Length: 669\r\n"
  "Connection: Keep-Alive\r\n"
  "Cache-Control: no-cache\r\n"
  "Cookie: SignOnDefault=c05182; re2unx23.fhlmc.com-7620-PORTAL-PSJSESSION"
  "ID=PeOThAJvP5eASjef; http%3a%2f%2fre2unx23.fhlmc.com%3a7620%2fpsp%2fgde"
  "v8%2femployee%2ferp%2frefresh=list:; ExpirePage=http://re2unx23.fhlmc.c"
  "om:7620/psp/"+ str_instance +"/;               
  PS_TOKEN=AAAApAECAwQAAQAAAAACvAAAAAAAAAAsAARTaGRyAg"
  "BObQgAOAAuADEAMBQnKJy2eec4oR+w+pMfCRv20gaknwAAAGQABVNkYXRhWHicHYs7CoAwF"
  "AQnUazEmxiS+L2A2klAewtrb+jh3LgP5sEyCzzGFiUGxb6ZNTeegcBMrFjY2RoSBysnl4rU"
  "E6V4sZUWxMgo5pmj03dkx/1WvkntB0d/CvA=; PS_TOKENEXPIRE=Tue Nov 26 10:38:4"
  "9 GMT-05:00 2002; SignOnDefault=c05182\r\n"
  "\r\n"
  "ICType=Panel&ICElementNum=0&ICStateNum="+itoa(int_icstate)+"&ICAction=%23ICSave&
ICXPos=0&"
 "ICYPos=0&ICFocus=&ICChanged=1&ICFind=&PRCSRUNCNTL_LANGUAGE_CD=ENG&GL_SQ"
"R_ADJP_ACCOUNTING_PERIOD%240=0&RUN_GL_LEDRPT_BUSINESS_UNIT=CFMAC&RUN_GL"
"_LEDRPT_LEDGER=ACTUALS&RUN_GL_LEDRPT_FISCAL_YEAR=2002&RUN_GL_LEDRPT_CUR"
"RENCY_CD=USD&RUN_GL_LEDRPT_PERIOD_FROM=1&RUN_GL_LEDRPT_PERIOD_TO=1&RUN_"
"GL_LEDRPT_SHOW_ERRORS_ONLY%24chk=N&RUN_GL_LEDRPT_SHOW_DETAIL_JRNL%24chk"
"=Y&RUN_GL_LEDRPT_SHOW_DETAIL_JRNL=Y&RUN_GL_LEDRPT_DISPLAY_26_DIGITS%24c"
"hk=N&RUN_GL_LEDRPT_FM_CD_COMBTN_OWNR=JV&SEQ_NBR_C%240=&CF_SELECT_OPT%24"
"chk%240=Y&CF_SELECT_OPT%240=Y&CF_SUB_TOTAL_OPT%24chk%240=Y&CF_SUB_TOTAL"
"_OPT%240=Y&CHARTFIELD_VALUE%240=";

Listing 1: Segment of HTML request script for Web page in Figure 9

Would you rather try to find the bad value in this script, or in a browser window? 

If you want to get fancy, you can use the  output_html procedure in Listing 2 to actually save the 
HTML files independently while the script is running. The procedure creates files named by the user 
ID followed by the command ID of the request that generated the response and saves the contents of 
the  _response (if  it’s  in HTML) into that file.  First  you’ll  want  to create  a  new directory called 
pagefiles in the TMS_Scripts directory. Here’s the resulting path:

[Drive]:\[Repository]\TestDatastore\DefaultTestScriptDatastore\TMS_Scripts\pagefile
s
Then you’ll put this procedure either immediately following the #include<VU.h> line or in an included 
header file.

#include<VU.h>
proc output_html()
{
 if ((match('html', _response)) || (match('HTML',_response))){ 
  z = open ("pagefiles\\"+_cmd_id+"_"+itoa(_uid)+".html", "w"); 
  fprintf (z,"%s", _response); 

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         14



  close(z); 
 }
}

Listing 2: The output_html procedure

In your script, you’ll want to call the output_html procedure after every http_nrecv command.
http_nrecv ["perftes~003"] 100 %% ;  /* Internally Generated */
output_html();
Now after you run your script, you can navigate to the ./pageview/ directory and double-click any file 
to view the page (or frame) in a browser window. 

Please note that neither the procedure nor the Test Log assembles the frames into complete pages or 
includes graphics files in the pages you’ll be viewing. Don’t waste any time wondering if this is an 
error.

Viewing Pages During the Test Run

A couple of months ago I mentioned to my office buddy, Chris Walters, that someone on the RDN 
forums had asked whether you can view TestStudio VU scripts while they’re running, like you can 
using Mercury LoadRunner. That’s one feature that’s been on the wish list of virtually everyone I know 
who uses TestStudio for performance testing. Well, lo and behold, Chris soon sent me an e-mail with 
some  files  and  a  list  of  instructions  (with  no  explanation  of  what  it  was  about).  I  followed  the 
instructions, and there I was watching my script run real-time in a browser!  

The instructions went something like this:

1. Create a directory called perflive in the TMS_Scripts directory.
[Drive]:\[Repository]\TestDatastore\DefaultTestScriptDatastore\TMS_Scripts\perflive
2. Copy these files into it: options.html, perfpage1.html, perfview.html. 
3. Copy the view procedure in Listing 3 into your script (or header file, as we’ve done previously).
#include<VU.h>
proc view() {
if ((match('html', _response)) || (match('HTML',_response))){
   string filename;
   sprintf(&filename, "perflive\\perfpage%d.html", _uid);
   file = open(filename, "w");
   fprintf (file, "%s", _response);
   close (file);
  } 
}

Listing 3: The view procedure

4. Call  view immediately  following  every  http_nrecv in  your  script.  

http_nrecv  ["perftes~003"]  100  %%  ;   /*  Internally  Generated  */
view();

5. Open perfview.html in Internet Explorer.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         15

file:///C:/Documents and Settings/Robert S Barber/Desktop/ET/to come
file:///C:/Documents and Settings/Robert S Barber/Desktop/ET/to come


6. Run your script.

7. Watch the Web browser.

The final page I saw looked something like Figure 10.

Figure 10: Sample view of perfview.html

It’s pretty self-explanatory, really. Now all you have to do is decide which user you want to monitor, 
type in the user number, and watch this user go.

This is obviously very helpful in debugging scripts as well as visualizing errors in the application. If 
you use this in conjunction with the Test Log and/or the  output_html procedure, you can both see 
what’s happening as it happens and review the code or view the HTML in a browser at your leisure 
after the completion of the test execution.

I did add one fancy thing to Chris’s code after using it for a while. I wanted to be able to make the view 
and/or the output_html calls optional and easy to enable or disable before any test execution for any 
script. Immediately following the common declarations in the script, I added two integers that I use as 
flags, view_flag and output_flag. See Listing 4.
push Timeout_val = Min_tmout;
push Think_avg = 0;

int view_flag = 1;  /*1 for view during script execution, 0 for do not view */
int output_flag = 1; /*1 for output during script execution, 0 for do not save 
output files */

Listing 4: Flag declarations

Then I changed all the view and output_html procedure calls to be part of if statements.

if (view_flag == 1) view();

if (output_flag == 1) output_html();

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         16



This way all I have to do is change the value of the flags (from 1 to 0 or vice versa) to either enable or 
disable the desired functionality based on my needs for a particular test run.

Stepping Through Scripts

There’s one last debugging feature I’d like to present to complete our discussion — stepping through 
scripts. If you’re familiar with GUI scripting in Robot, you’re probably very used to stepping through 
scripts line by line as a debugging technique. VU scripting has that same functionality, but it’s rarely 
used because you can’t really see what the response from the emulation command was to know if 
you’ve just stepped into (or right past) the error. 

This functionality has new value when used in combination with our view procedure. To step through a 
script  with the  view procedure  enabled,  simply set  up your  script  for  view and execute it  with  a 
perfview.html open in a browser as we did earlier in the article. As soon as TestManager finishes 
initializing your script, choose Monitor > Suspend Test Run from the menu bar. See Figure 11.

Figure 11: Monitor menu options in TestManager
Then choose Test Script from the Monitor menu to display the Test Script View. From there you can 
resume running your script and suspend it again after resuming or step through the script using either 
the single-step or multi-step option. See Figure 12.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         17



Figure 12: Test Script View in TestManager

For our purposes, we want to click Single Step (which causes the script to execute the next emulation 
command, then wait for our input), then check our browser with perfview.html. As we continue to 
click and check, we see that now we have complete control over when the script takes the next step. 
We can see the emulation command that’s being executed and the returned HTML all at the same time. 

Once again, I’m sure I don’t have to spell out how useful this combination is in determining whether an 
error is due to the script or the application, and if it’s due to the script, how easy this makes it to narrow 
down the possible causes of that script error.

Summing It Up
Historically, it’s often been difficult to determine the actual root cause of a script failure from the 
obvious symptoms. Thinking about some of the common causes for failure can help when trying to 
track down that root cause. Coupling that thought process with the added ability to view the relevant 
Web pages in a browser both in real time and subsequent to a test run makes the process significantly 
easier.

Acknowledgments
• Thanks go to Chris Walters for developing and providing the code for the view function and 

assisting with other technical aspects of this article.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         18



• The original version of this article was written on commission for IBM Rational and can be found 
on the IBM DeveloperWorks web site 

About the Author
Scott Barber is the CTO of PerfTestPlus (www.PerfTestPlus.com) and Co-Founder of the Workshop on
Performance and Reliability (WOPR – www.performance-workshop.org).  Scott's particular specialties
are  testing  and  analyzing  performance  for  complex  systems,  developing  customized  testing
methodologies, testing embedded systems, testing biometric identification and security systems, group
facilitation and authoring instructional or educational materials.  In recognition of his standing as a
thought leading performance tester, Scott was invited to be a monthly columnist for Software Test and
Performance Magazine in addition to his regular contributions to this and other top software testing
print and on-line publications,  is regularly invited to participate in industry advancing professional
workshops  and  to  present  at  a  wide  variety  of  software  development  and  testing  venues.   His
presentations  are  well  received  by  industry  and  academic  conferences,  college  classes,  local  user
groups and individual corporations.  Scott is active in his personal mission of improving the state of
performance testing across the industry by collaborating with other industry authors, thought leaders
and expert practitioners as well as volunteering his time to establish and grow industry organizations.
 His tireless dedication to the advancement of software testing in general and specifically performance
testing is often referred to as a hobby in addition to a job due to the enjoyment he gains from his
efforts.

About PerfTestPlus
PerfTestPlus was founded on the concept of making software testing industry expertise and thought-
leadership available to organizations, large and small, who want to push their testing beyond "state-of-
the-practice"  to  "state-of-the-art."   Our  founders  are  dedicated to  delivering expert  level  software-
testing-related  services  in  a  manner  that  is  both  ethical  and  cost-effective.   PerfTestPlus  enables
individual experts to deliver expert-level services to clients who value true expertise.  Rather than
trying to find individuals to fit some pre-determined expertise or service offering, PerfTestPlus builds
its services around the expertise of its employees.  What this means to you is that when you hire an
analyst, trainer, mentor or consultant through PerfTestPlus, what you get is someone who is passionate
about what you have hired them to do, someone who considers that task to be their specialty, someone
who is willing to stake their personal reputation on the quality of their work - not just the reputation of
a distant and "faceless" company.

Beyond Performance Testing - Part 5: Determining the Root Cause of Script Failures
© PerfTestPlus, Inc. 2006         19

http://www.ibm-developerworks.com/

	Part 5: Determining the Root Cause of Script Failures
	Recognizing and Minimizing False Failures (and Passes)
	Failures Based on HTTP Return Codes
	Failures Based on File Sizes
	Passes Returned for Embedded Errors

	Addressing Common Causes of Script Failures
	Datapools
	Navigation
	Data Correlation
	Authorization/Authentication

	Collecting Information About Script Failures
	Viewing Native Logs
	Creating Custom Output
	Viewing Returned Pages After the Test Run
	Viewing Pages During the Test Run
	Stepping Through Scripts

	Summing It Up
	Acknowledgments
	About the Author
	About PerfTestPlus

