
TesterPI:

March 2006 $9.95 www.StickyMinds.com

The Print Companion to

Performance
Investigator

PAGE 24

LIFE'S NOT
A DRESS REHEARSAL

Plan for emergencies now
PAGE 14

CASTING CALL
Hire a tester with
an agile attitude

PAGE 16

LIFE'S NOT
A DRESS REHEARSAL

Plan for emergencies now
PAGE 14

CASTING CALL
Hire a tester with
an agile attitude

PAGE 16

Te
st
er

PI
:

P
e
r
f
o
r
m
a
n
c
e

I
n
v
e
s
t
i
g
a
t
o
r

20 BETTER SOFTWARE MARCH 2006 www.StickyMinds.com

b y S c o t t B a r b e r

It’s no mystery. You can save
time and money when you
investigate performance
early and validate
performance last.

www.StickyMinds.com MARCH 2006 BETTER SOFTWARE 21

Your first performance test demonstrated
that at a ten-user load, the system
response time increased by two orders of
magnitude—meaning a page that returned
in one second with one user on the system
returns in one hundred seconds with ten
users on the system. The second test
showed that at a fifty-user load, the system
fails miserably with Java exceptions
prominently displayed on every requested
page. But the system is intended to
support 2,500 simultaneous users!

Sound familiar? That is exactly what
happened to me the first time I came
onto a project to do performance testing
at the end of development—rather than
at the beginning. In this case, it took eight
days to find and fix the issue causing the
failure, not the response time issue, which
left four business days to improve re-
sponse time and complete the performance
validation—assuming, of course, that no
additional defects further delayed the
validation. Not surprisingly, even after
we resolved the response time issue, the
system was not even close to meeting the
performance requirements. In fact, we
determined that the corporate network
was inadequate to support the additional
bandwidth needed for this application!
As you can imagine, the product did not
go-live on the advertised date.

Think about how different this
performance testing effort would have
been if there had been a plan to determine
the actual capacity of the selected server
hardware, to verify the available network
bandwidth, to execute some preliminary
tests on critical functionality, and to
shake out configuration errors in the
load balancers when those items first
became available. In the case of the project
above, the chaos would have been
completely avoided if there had been
such a plan in place. One test, one script,
one tester. Four hours, tops, at the
beginning of the project and both the

debilitating software defect and the
insufficient network bandwidth would
have been detected, resolved, and forgotten
before anyone had even published a
go-live date.

Sadly, late performance testing and
finding avoidable show-stopping problems
without enough time to react is not
uncommon. Many people have similar
stories, which lead some managers to
briefly consider spending money to bring
the performance tester on the project early.
But there is a big step from “briefly
consider spending” to “spending.” To
take that step, managers need more than
stories, especially when they already
know that it is virtually pointless to validate
performance requirements on a system that
is still in flux. Every change to the system
can cause unexpected performance
changes and thus require the validation
process to start over. Managers need to
know what they will gain from bringing
in the performance tester before the
software is functionally stable. What value
will it add? How will it be planned? What
other activities will it impact?

This leads to two basic questions.
First, how do we communicate to our
managers an approach for early project
performance investigation that will give
them confidence that we aren’t just
shooting from the hip, so to speak? Second,
how do we demonstrate that our approach
will actually reduce the likelihood of late
project performance surprises rather than
wasting project time chasing shadows
that turn out to be nothing more than
incomplete areas of the system? I struggled
with these two questions for years. No mat-
ter how many reported disasters and “early
performance testing saved the project”
stories I collected, I only succeeded in
convincing managers that there is a risk in
not detecting performance issues early. I
never quite convinced them that you or
I may actually be able to mitigate that

Imagine you are reaching the end of a major software development
project. Functional testing is in its final phase and so far hasn’t
revealed any ship-stopping defects. You have planned and developed
your performance tests to validate the requirements you were given,
and finally the project is entering two weeks of performance
requirements validation, which is anticipated to be the last activity
before go-live.

Confidential

risk with something other than dumb luck.
Recently I had a bit of an epiphany

that has gone a long way toward
answering those two questions. In the
middle of a testing project, in the middle
of a conversation with the testers—in the
middle of a sentence—I was struck with
a new way to look at the difference
between the way investigation and
validation relate in performance testing
and the way they relate in functional
testing. But before I share that epiphany
with you, I should probably give you my
definitions of validation and investigation
as they relate to testing in this discussion.

On all software development projects
there is a point at which it becomes
important to determine whether the
software does what it is intended to do—in
other words, “test it.” Depending on the
development methodology you follow,
this testing may start early or late, be
formal or informal, have heavy or light
documentation, and be conducted by
developers, testers, users, or all three. But
no matter which methodology you follow,
testing is meant to determine whether the
software, as developed, complies with
the vision of those who requested it in
the first place. So one way or another,
tests are conducted. The results of those
tests are compared against that vision,
whether the vision takes the form of

specific and predefined requirements,
stories on 3x5 cards, or bar napkin
sketches. If the test passes, the area of the
software that the test exercised is said to
be validated. More simply, validation is a
testing activity that compares the software
under test to the expectations that have
been set or presumed for that software.

Since investigation is probably
thought of as a testing activity less often
than is validation, let’s start with a
definition. Investigation: A detailed
inquiry or systematic examination.
Without going any further, we see an
obvious difference between how I’ve
defined validation and the way investi-
gation is defined. Validation requires the
existence of expectations about the
outcome of the testing, but investigation

defects would be uncovered by those
tests? How would the tests be designed?
How would you ensure that these tests
are adding value to the project? How
would these tests be scheduled to
complement the development process
rather than repeatedly derail it?

For me, distinguishing between
investigation and validation helped me
bridge the gap between anecdotes and
the answers for which the managers were
looking. Just using the term “investigation”
while discussing the value of starting
performance testing early seemed to get
even the most skeptical managers to pay
more attention. Once they were paying
attention, my ability to describe a
concrete yet nimble approach to that
investigation finally convinced them that
the dollars they were about to approve
for early investigation of performance
were going to be well spent.

This approach to early lifecycle
performance investigation is not
complicated, although it can be a little
complicated to explain. It embraces
change during a project’s lifecycle, it
iterates (not always in a predictable
pattern), and it’s not always clear when
to make the shift from investigation back
to validation tasks. To simplify these
potential challenges, let’s follow a linear
path through the key elements of the
investigation approach and discuss in
detail its more dynamic elements.

When viewed linearly, the approach
starts with an expression of the intent of
the performance investigation. The
individuals who have applied the
approach have reported that the intent is
easiest to both express and follow
through on when it is synchronized with
project deliveries or milestones. From the
expression of intent, strategies are created
describing the general approach to
investigation enabled by each key project
delivery. From each strategy, mini-plans
are built for major tests or tasks identified
by that strategy. As project deliveries are
made, the mini-plans related to that
delivery are executed in priority
sequence, appropriately reporting,
recording, revising, reprioritizing, and
improving the application and the overall
investigation plan as the work progresses.
That makes for one expression of intent

makes no reference either to outcomes
or to expectations. This distinction is
the reason we say “investigating a crime
scene” rather than “validating a crime
scene”—validating a crime scene would
violate the concept of “innocent until
proven guilty” by implying that the
crime scene was being examined with a
particular expectation as to what the
collected data would mean.

So what makes the relationship
between these two activities in performance
testing fundamentally different from their
relationship in functional testing? In my
experience, two factors mark the
relationship as different. The first is that
some manner of requirement or
expectation typically has been established
prior to starting functional testing, even
when that testing is exploratory (or
investigative) in nature. It’s an unfortunate
reality that performance requirements are
rarely well defined, testable, or actually
required for an application to go-live.
This means, with rare exception, that
performance testing is naturally inves-
tigative due to the lack of predefined
requirements or quantifiable expectations.

The second factor differentiating these
activities is the frequency with which a
performance test uncovers a single issue
that makes additional validation testing
wasteful until that issue is resolved. It is

almost the norm for a single performance
issue to lead to a pause, or even a halt, in
performance validation testing. This is in
contrast to functional testing, where it is
fairly rare for a single test failure to
essentially disable validation testing of
the entire system.

When taken together, these two factors
clearly imply that an overwhelming majority
of performance tests should be classified as
investigation, whether they are intended
to be or not. Yet the general perception
of many individuals and organizations
seems to be “just like functional testing,
performance testing is mostly validation.”

Think for a moment how you would
plan for a mostly investigative performance
testing effort. When would you conduct
which types of tests? What types of

22 BETTER SOFTWARE MARCH 2006 www.StickyMinds.com

How would these tests be scheduled to complement the
development process rather than repeatedly derail it?

24 BETTER SOFTWARE MARCH 2006 www.StickyMinds.com

per project, one strategy per key project
delivery, one mini-plan per significant
strategy task, and one set of results per
mini-plan. If this sounds like a lot of
work, don’t worry. This approach is
actually extremely efficient, as I hope the
following description will demonstrate.

Performance
Investigation
Expression of
Intent

The expression of intent for a
performance investigation can often be
accomplished in a single work session
involving the lead performance tester, the
lead developer, the project manager, and
a copy of the project plan, which is used
to identify key project deliveries. Because
we are articulating and recording intent,
not creating another plan, we won’t
concern ourselves with dates; rather we
want to identify the sequencing of key
deliveries and estimate how much time
we can expect between these deliveries.
The specific deliveries we are interested
in relate to hardware components,
supporting software, and application
functionality becoming available for
investigation. For example, it is often the
case on a Web development project that
the first delivery that lends itself to
performance investigation includes
bringing up a Web server to present
prototypes to stakeholders. In that case,
we would want something similar to this
in our expression of intent: “Delivery 1:
Web server with static prototype available
for X days. Investigate various Web server
configurations for response time,
throughput, and memory allocation.
Investigate available network band-
width and latency. Investigate impact of
firewall, proxy server, and load balancer
configurations. During investigation,
collect configuration data to aid in
future tuning and data to assist in
validating adequacy of existing network
components.” Done. We can move on
to expressing the intent of investigation
for the next key delivery. These examples
may or may not be the top priorities for
investigation based on the specifics of
your project, but I’m sure you can see
how learning more about these areas
early in the project can add value. Even

• Data of special interest
• Areas of concern
• Pass/Fail criteria
• Completion criteria
• Planned variants on tests
• Load range
• Tasks to accomplish strategy

See the StickyNotes for an example
strategy for a prototype Web site.

Performance
Investigation
Mini-plan

As a delivery approaches, we finally
create what I call mini-plans. Each task
in a strategy now gets up to a single page
of its own, often including pictures, to
spell out the remaining details needed to
complete or repeat the task. The mini-plan
should be completed far enough in
advance to be shared with the team for
recommendations or improvements and
for necessary resource coordination to
take place. Continuing with our example,
a mini-plan might define “moderate
load,” identify the exact resources to be
monitored (and who will set up the
monitors), and specify the configuration
settings expected to be varied and by what
degree. Once drafted, the mini-plans can
be sequenced for execution by priority as
determined by key team members.

Information to include in a performance
investigation mini-plan:

• Strategy task execution method
• Specifically what data will be collected
• Specifically how that data will be

collected
• Who will assist, how, and when
• Additional information needed to

repeat the investigation
• Sequence of tasks by priority

See the StickyNotes for an example
mini-plan.

When each delivery is made, the
performance investigation begins with the
highest priority mini-plan related to that
delivery. The most important part of
mini-plan execution is to treat it like a one-
to two-day exploratory testing session
(see the StickyNotes for more informa-
tion)—modifying the plan intelligently
as results analysis leads to new priorities.
At the conclusion of each mini-plan

if no performance issues are detected,
that information will be useful to eliminate
variables when trying to pinpoint issues
detected later in the project.

Information to include in the
performance investigation intent:

• Investigable deliveries
• Duration of each delivery investigation
• Key areas of investigation

See the StickyNotes for an example
expression of intent for a Web
development project.

Performance
Investigation
Strategy

After sketching out the expression of
intent, the performance tester can
immediately begin to draft an investigation
strategy for each key delivery. This
strategy should be limited to a single
page per project delivery and should
include pictures or diagrams whenever
they are more descriptive than text.
When text is the medium of choice, lists
typically suffice. While there is a wide
range of information that may be included
in the strategy, the critical components are
the desired outcomes of the investigation
and the key tasks anticipated to achieve
that outcome. The strategies are living
documents that are available to the entire
team for review, comment, and revision.
Depending on the nature of the project, it
may make sense to complete strategies a
few deliveries in advance to limit potential
rework, or it may make sense to create
draft strategies for all of the key deliveries
while waiting for the first investigable
delivery. The following information
might appear in the strategy for our
example delivery item: “Measure available
network bandwidth and latency while
increasing the number and/or frequency
of page and/or file requests,” and “Under
moderate load, measure resource
utilization on the Web server using
various configuration settings.”

Information to include in a performance
investigation strategy:

• Intent of the investigation
• Prerequisites of strategy execution
• Tools and scripts required
• External resources required
• Risks to accomplishing strategy

www.StickyMinds.com MARCH 2006 BETTER SOFTWARE 25

execution, share your findings with the
team, then reprioritize the remaining
tasks, add new tasks, and/or remove
planned tasks based on the new questions
and concerns raised by the team. When
reprioritizing is complete, move on to
the next-highest priority task.

Keys to mini-plan execution:
• Analyze results immediately and

re-plan accordingly.
• Communicate frequently and openly

across the team.
• Record results and significant findings.
• Record other data needed to repeat

the test later.
• Revisit investigation priorities after

two days.

The key to successfully implementing
the performance investigation approach,
of course, is continual communication
among team members. As I’ve indicated
above, it’s a good idea not only to keep
planning documents available to all
members and check back with one another
frequently, but also to plan time into
testing schedules to review and update
task lists and priorities. Whether you
implement this three-tier approach to
planning verbatim or with a healthy dose
of customization, or whether you do it
using documents, spreadsheets, notebooks,
or whiteboards and digital cameras (my
personal favorite) is completely irrelevant
as long as you keep in mind the goals of
the approach: structured yet highly
adaptable investigation.

Goals of performance investigation
approach:

• Demonstrate to stakeholders that
there is a plan of attack.

• Provide managers and stakeholders
with progress and value indicators.

• Reassure managers that key
information will be captured.

• Provide a structure for capturing
information that will not noticeably
impact the time available for actual
investigation.

• Ensure that the approach is
designed to embrace change, not
simply tolerate it.

Case Closed
So, realistically, what have we just

done? We started by agreeing that leaving
performance measurement, validation,
investigation, tuning, etc., until the last set
of tasks prior to releasing the application
to production is risky. We then acknowl-
edged that trying to validate or predict
production performance too early is
essentially pointless, and we granted that
it is reasonable for managers to resist early
performance testing if they believe that is
what will happen. Next, made a distinction
between late lifecycle validation and early
lifecycle investigation to demonstrate to
those managers that we are not proposing
validating earlier, but instead we are
proposing a whole new activity. Finally,
we outlined an approach that allows us to
investigate without spending a lot of time
writing documents that will be rendered
invalid with the first test, while giving the
managers and stakeholders confidence
that this is an activity that will provide
results they can relate to specific, tangible
value. Many managers will still want to
see a return on investment analysis before
they actually approve the expense of early
performance investigation, but that’s a
good thing. In my experience, managers
don’t ask for an ROI until they are
mentally ready to spend the money.

Of course, most managers won’t have
the time to hear you out unless you can
get their attention quickly. I think these
six words will probably do the trick:
Investigate Performance Early; Validate
Performance Last. {end}

Scott Barber is the CTO for PerfTestPlus,
Inc. His specialty is context-
driven performance testing
and analysis for distributed
multi-user systems. Contact
him at sbarber@perftestplus.com.

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� Example expression of intent for a
Web development project

� Example strategy for a prototype
Web site

� Example mini-plan
� More on exploratory testing

jmcallister
Note
insert "we" between "Next," and "made a distinction"

