
Have you ever had this expe-
rience? You’re explaining
something that you’ve gone
over a million times before.
Suddenly, you stop in the
middle of explanation one
million and one and say,
“That’s it! Why didn’t I
think of that years ago?”

This happened to me
just the other week while I
was working to help a client
improve an approach to performance
testing. It was almost as if I was listening
to someone else speaking for a mo-
ment, as I heard my own words replay in
my head:

“We know that there is an issue on the
app server that they are working on now.
That pretty much means that testing
requirements compliance would be
pointless, but we still have to see what the
new Web server hardware has done for
us, right? So let’s forget the requirements
for now and whip up some scripts to
investigate how the….”

I didn’t even get to
finish the thought,
because Tom was asking
“Investigate how the
what?” and Kevin was
looking at me as if I’d
grown a second head.
So I did what any good
tester would do. “Hold
on a second,” I said, and
moved briskly to the whiteboard to
quickly sketch a picture that looked
something like the figure shown here.

I’m sure some of you are thinking
“OK, what’s the big deal?” Neither inves-
tigation nor validation is a revolutionary
concept for software testers. In fact, the
Association for Software Testing (www
.associationforsoftwaretesting.org) specif-

ically refers to software test-
ing as “a technical investi-
gation done to expose
quality-related information
about the product under
test.” And one can hardly
read an article about soft-
ware testing that doesn’t dis-
cuss “validation” in one way
or another.

What struck me in that
moment was not the fact

that most performance testing projects
necessitate both investigation and valida-
tion; it was the relationship between
investigation and validation during per-
formance testing that became suddenly
clear. For years I’ve been trying to
explain to people that the relationship
between investigation and validation in
performance testing is fundamentally
different from the relationship between
investigation and validation in functional
testing. But while I understood the dis-
tinction clearly in my head, it never

seemed to come across
very well verbally.

Before I make my
case about how these
relationships differ, I
should clarify my work-
ing definitions of “vali-
dation” and “investiga-
tion” for the purposes
of this discussion.
Whether a project is

agile, waterfall or somewhere in be-
tween, at some point it becomes impor-
tant to determine whether or not the
software does what it was intended to do
in the first place. In other words, you
have to test it.

Of course, if you follow a waterfall
model, a V-model or some similar
model, this happens near the end of the

project and takes the form of executing
lots of well-planned individual tests.
Generally, each one of these tests will
have been designed to determine
whether or not one specific, predefined
requirement has been met. If the test
passes, the implementation of that
requirement is said to be “validated.”

If you take a more agile approach,
you may instead be executing tests to
determine whether or not the concept
sketched on the bar napkin, now lami-
nated and tacked to the wall in the lead
developer’s cube, has been implement-
ed in accordance with the vision of the
original artist. Although the criteria for
determining whether one of these tests
passes or fails are not nearly as well
defined as the ones we discussed above,
a passing test is nevertheless said to have
“validated” the implementation of the
feature or features being tested—so
pretty much any way you look at it, “val-
idation testing” can be thought of as an
activity that compares the version of the
software being tested to the expecta-
tions that have been set or presumed
for that product.

That takes care of validation, but
what about investigation?

Presumptions of Innocence
Let’s start with a dictionary definition of
investigation: “a detailed inquiry or sys-
tematic examination.” The first and most
obvious difference between our working
definition of validation and the diction-
ary definition of investigation is that we
have stated that validation requires the
existence of expectations about the out-
come of the testing, while the definitions
of investigation make no reference to
either outcomes or expectations. This
distinction is why we talk about “investi-
gating a crime scene” rather than “vali-
dating a crime scene”; validating a crime
scene would violate the presumption of
“innocent until proven guilty” by imply-
ing that the crime scene was being exam-

Investigation vs.
Validation

Scott Barber

PPeeaakk PPeerrffoorrmmaannccee

Scott Barber is the CTO at PerfTestPlus
Inc. His specialty is context-driven perform-
ance testing and analysis for distributed
multiuser systems. Contact him at sbarber
@perftestplus.com.

MONTH 2005 www.stpmag.com • 42

Investigation Validation

Data Pass/Fail

Performance Testing

43 • Software Test & Performance MONTH 2005

ined with a particular expectation as to
what the collected data will mean.

The most well-known testing method
that can be classified as “investigation”
is exploratory testing (ET), which can
be defined as simultaneous learning,
test design and test execution. In a
paper titled “Exploratory Testing
Explained,” James Bach writes: “An
exploratory test session often begins
with a charter, which states the mission
and perhaps some of the tactics to be
used.” We can substitute for “mission”
the phrase “reason for doing the inves-
tigation” without significantly changing
the meaning of Bach’s statement. If we
then substitute “A crime scene investi-
gation” for “An exploratory test ses-
sion,” we come up with “A crime scene
investigation often begins with a char-
ter, which states the reason for doing
the investigation and perhaps some of
the tactics to be used.”

Other than the fact that I doubt
crime scene investigators often refer to
their instructions as a charter, I don’t
see any conceptual inaccuracies with
the analogy, so let’s agree on “investiga-
tion” being an activity based on collect-
ing information about the version of
the software being tested that may have
value in determining or improving the
quality of the product.

So what is it that makes the relation-
ship between investigation and valida-
tion in performance testing fundamen-
tally different from their relationship in
functional testing?

In my experience, two factors stand
out as causing this relationship to be
different. The first is that typically,
some manner of requirement or
expectation has been established prior
to the start of functional testing, even
when that testing is exploratory in
nature, and in last month’s column I
pointed out that performance require-
ments are rarely well defined, testable
and/or in fact required for an applica-
tion to go live. What this means is that,
with rare exceptions, performance
testing is by nature investigative due to
the lack of predefined requirements or
quantifiable expectations.

The second factor differentiating
these activities is the frequency with
which a performance test uncovers a
single issue that makes any additional
validation testing wasteful until that
issue is resolved. In contrast to func-
tional testing, where it is fairly rare for a
single test failure to essentially disable
continued validation testing of the
entire system, it is almost the norm for a
single performance issue to lead to a
pause, or even a halt, in
validation testing.

When taken together,
these two factors clearly
imply that the overwhelm-
ing majority of perform-
ance tests should be classi-
fied as “investigation,”
whether they are intended
to be or not. Yet the gener-
al perception among many
individuals and organiza-
tions seems to be that “Just
like functional testing, per-
formance testing is mostly
validation.”

Take a moment and
think about the ramifica-
tions of this disconnect.
How would you plan for a
“mostly validation” per-
formance testing effort?
When would you conduct
which types of tests? What
types of defects would be
uncovered by those tests?
How would the tests be designed? What
skills would you look for in your lead
tester?

Think, too, about the chaos that
ensues when a major project enters
what is planned to be performance vali-
dation two weeks before go-live, and the
first test uncovers the fact that at a 10-
user load, the system response time
increases by two orders of magnitude,
meaning that a page that returned in 1
second with one user on the system
returns in 100 seconds with 10 users on
the system—on a system intended to
support 2,500 simultaneous users!

And if you think that doesn’t hap-
pen, guess again: That is exactly what

happened to me the first time I came
on board a project to do performance
testing at the end of development
rather than at the beginning. It took
eight days to find and fix the underlying
issue, leaving four business days to com-
plete the performance validation. As
you can imagine, the product did not
go live on the advertised date.

Now think about how you would
answer each of those questions if you

imagined instead a most-
ly investigation perform-
ance testing effort. I sus-
pect that your answers
will be significantly dif-
ferent. Think about the
projects you have worked
on: How would those
projects have been dif-
ferent if the project plan-
ners had planned to con-
duct performance inves-
tigation from the begin-
ning? If they had
planned to determine
the actual capacity of the
hardware selected for
Web servers, planned to
determine the actual
available network band-
width, and planned to
shake out configuration
errors in the load bal-
ancers when they first
became available?

The chaos on the proj-
ect I described above would have been
avoided if there had been a plan (or a
charter) in place to investigate the per-
formance of the login functionality as
soon as it became available. One test.
One script. One tester. Four hours,
tops, and the debilitating issue would
have been detected, resolved and for-
gotten before anyone had even pub-
lished a go-live date.

Simple, huh? With or without the
drawing on the whiteboard, the entire
concept that I have struggled to make
managers and executives understand
for years comes down to these six words:

“Investigate performance early; vali-
date performance last.” ý

•
The majority of

performance

tests should be

classified as

‘investigation,’

whether they

are intended to

be or not.

•

