Macro to Micro
And Back Again

About 10 vears ago, I was
at a Us miliiary port in
Bremerhaven. Germany.
evaluating a prototype
device and bem sofiware
intended o improve the
in-tran=it visibilicy of mili-
tary equipment. (I didn't
realize it at the time, b
in retrospect I realize that
was my firse software vesi-
ing job, even though my
title was “Information Engineer”™—
whatever that means)

One afternoon. the project lead
called me over w a mhle where he'd
spread his notes, skerches, flow chars,
spreadsheets and other pieces of
paper. He waved his hand over the
array and asked, "What does this say 1w
vour? " [said, “You mean other tha yon
use alotof papert™ and proceeded
suimimarze for about 30 minutes the
intent of our olservations and how
cach stack of paper suppored dhat
intent.

Modding, he pointed at a specific
spreadsheer with a mathemartically
derived summary of the quan tification
of the gqualitative dam we'd collected
so far, and asked the same question:
“What does this say to you?" I smdied
the summary and reviewed the suop-
porting dam, roughing out some suim-
mary data of my own, commenting
and asking quesions all the while.
Abow the time I'd completely zoned
in on the numbers, summaries and
data patterns, and was about o go ow
ofi a limb and accuse the swmimaries of
*ing with mathematically correct, but
highly misleading s@tistics” he
stopped me. I looked ar bim quizzical-
Iv. thinking I'd made a mistake or that
I'd crossed some kind of line.

O the contary, he informed me
that he'd been wying te determine
whether I was a “big picture person™ or

*:;..

N

10 » Sofwvare Test & Parfarmancea

L ok

Scott Earber

a “details permson”—and
that I seemed o be both. T
didn't understand what
the big deal was; I could
have tald him that. Before
I could so mucdh as shiug,
he went on w explain to
me how, over his Mbvear
career, he'd met very few
people who could effec-
tively flip back and forth
hetween macro- and
micro- tasks. At the tme I didn't
believe thar ability was as rare as he
implied, but he was my boss on a gov-
ernment contract, so I figured it was
smarter o smile and say “thank you”
than to debate the point.

The Stuff in Between

For some teason. I remember that
incident. I've always been prewy good
with both macro-and micro-level tasks,
switching back and forth between the
twio—it’s the soff in between that has
always eluded me. For ex ample. if put
on the spot, I can, without hesimation,
tell you where I want o be in 15 years
as easily as I can tell vou what my plans
and msk lst are for wdav. If, however,
youl ask me what I'll be up six months
from mow Il scer, stare our with a
laundry list of disclaimers and assump-
tions, and conclude with some vague,
dismissive phrase like "I dunno,
maybe. if evervhing turns out the way
I think it might. I'd like to be...”

The ather day, it dawned on me
that every top-notch performance
tester who loves his or her job exhibits
this trait. We all tend to be good at fig-
uring out concepmal overviews of the
applications we're testing—their basic
architecaures, expected usage. busi-
ness drivers, testing strategies and so
on. We also enjoy the time we spend
rracing individual results w source
code, conducting detailed retrospec-

tive data analysis or writing code o
solve some challenging aspea of real-
istic mser simulation. Our frustrations
always seem to coime in the areas in
bemween, such as. "How long will it
take vou o test thist™ “How much
more performance testing do we
need? ™ or "Whardates are you going o
need access to the network veam:™

As | pondered this a livde more, 1
realized that many of the great fumc-
tional testers I've encoancered over
the vears excel at the micro lewel.
which often earns them names like wit-
picky and ansl ompalsioe. Other mem-
bers of ypical software development
teaims who spend most of their time in
microdevel actvites are developers
and system admitiistrators: (o surprise
there. As also makes sense, the great
busines analyses I've worked with are
macro-leve | savans. They can look
past implementation details w foous
ofni overall business intent and items
critical to the end user in a way that I
efwvy at times 1 ask myself why elite
performance tescers pend w demon-
strate a preference for the waits gen-
erally asociated with business analysis
and functional testers rather than
trajes, say, of managers at various levels
of the teaim.

More Meta-Analysis

If vou're wondering what's the point
of all this metaanalysis, I asked that
myself—and came up with some inter-
esting answers. First. [redlized that
when interviewing performance
testers, I ask for stories inended w
elicit the same kinds of responses that
my projec lead wanted when he sked
me w review his paperwork. Uncl oy
epiphany of a few days ago, 1 had no
idea that I'was subconsdously mying to
determine whether the interviewee
was a big-picture person, a deil per-
son or both. And T had no idea thar T
was acually looking for people who
were both. Enowing specifically what
I'm koking for is going o make that

Scott Barber is the CTO at PerfTestPlus
His specialty is contest-deiven performance
testing and analysis for distributed mubi-
user systems. Contact him at shatber

@ perfestp lus com.

SEPTEMEER 2006

part of conducting interiews easier in
the furure. For instance. I can sim plify
what often felt like a rambling set of
questions and answers to owo ques-
tions 1) Give me an overview of the
kst application vou performanc e4est-
ed and the gene ral intent of perform-
ance-testing thar application, and 2)
Tell me abour how you collected and
analvaed data o support that intent. I
suspect that someone who enjoys both
the macro and mico aspeas of per-
formance testing will launch intw dear
and conversational stories in respon se
to both questions and will have o hes-
itation switching gears from one story
o the ather.

My MacroMicro Revelation

Mext. it dawned on me that classifyving
variows aspects of performance esting
® either macro- or micro-level tasks
can be extremely useful in teaching
performance testing and in describing
the purpose of performance testng
activities o the rest of the software
development team.

As an example, consider usage
mode] development—a macro-level
task. To create an acourace and useful
model. we don't need o know the
implementation deils, every piece of
variable dam, or every bumon click,
screert. hot key error condition and
method for simulating session persise-
ence with our load gene ration wol

What we do need o know is what
the application’s acual useirs do at an
activity level. A general description
like the following, with some hands-on
experience with the application under
test. could generate a fairly accurate
user activity model valuable for a
plethora of micro-leve]l activities:
"Most users will log in. do some
searches. add some smiff o their carc
and eventually check out. Some will
add smff o their car. bur never check
ot Some will areate new accouns. A
few will updare account information
aof check arder status.”

Some of the micro-level activities
this simple model could inform
include test dam creation, usagesce-
nario variance analysis, scenario script-
ing. performance goals and require-
ments analysis by activiey, and sequen-

SEFTEMEER 2006

tial dependencies in sceparics. Bur
beware! Determining the entire gener-
al-usage scenario before vou create the
correct mumber of the right dasses of
test users for th e expected system load
may result in the wrong group of peo-
ple in your working session, skewing
the general picture of the application
usage and exposing vou to “analysis
paralysis.”

Finally, I realized, as I was explain-
ing my micro/ macro rev

elation t A fofn-per-
formance teswer, that
what we performance

testers do has just gotren
easier w explain. If vou
say that performance
testing imvolves a cyclical
process of decomposi-
tion and recompositon
of the application, folks
who don't already know
what that means will
remain in the dark.
However. if you say
that performance testing
cofmimonly alwernates
bewween macro- and
micro-level tests o darify
pacterns and isolate per-
formance issues, making
them easier to resolve,
the light bulb will spark.
The same is wue for my
preferred methods of
performance test plan-
ning and documenta-
tion. Micro-level strategies and micro-
level plans make sense and inmitively
imply the distincrion thar [once spent
much of amagazine article explaining
bemween my CPerformance Test
Strategies” and “Performance Test
Mimi-Plans”™ (Dot you hate ic when
vou come up wich a better name for
something after the document or
e-mail has already been delivered?)

The Big Picture and the Details

As I think back aver all of the doxens
of software projecs I've performance-
tested. Irealize that the vast majoricy
of the insufficient performance test-
ing T've seen, which didn't meet the
needs of the ream. were overly fooised
on either the macro- or the micro-level

L

Classifying
various aspects
of performance
testing as micro-
or macro-level

tasks can be

extremely

useful.

L]

Peak
Pepformance

views, Teams that were overby fooised
ofi the big picure would encouncer
frustrations suwch as identifving that
thie application has failed v meet the
stated performance requirements, b
may have significantdifficulry in deter-
mining what w do fix the problm.
Teams that were overly focused on the
details would have the opposite frus-
tration; they'd have exceptionally wellk
tuned servers, algorithms and net-
works, but have no idea
what the performance
felt like o an acmal user.

In my experience. the
key to boch determining
how the application is
really performing and
being able to isdate per-
formance j=ues so they
can be effectvely resol-
ved is striking a balance
berween these macro-
and mioro-level activires.

This is also why I'im a
stanfich proponent of a
performance tester, or
performance test team
collaborating closely with
the developers. testers
analysts= and managers
throughout the testng
effert. It's much e asier wo
find the right balance
when working closely
with teams and indwidu-
als with different. bur
complementary perspec-
tives of the application being tested as
opposed toworking in isolation.

Macro- and micro-tescs, macro-
strategies and micro-plans. macro-
level application usage and micro-level
usage implementation de@mil, macro-
level resules sumimaries for execurives
and micro-level test resules for devel-
opefs... it souwnds like a day in the like
of a performance tester 1o me.

I guess that's why 1 ke pt remember-
ing that particular hour from my first
rip o Germany. Now maybe 1can get
past that pesky “What does this say
o your” and recall something that's
far more presing: the pame of
the exguisite Hefeweizen 1 downed
o that trip that has had me hooked
ever since, [

wers.stpmag.com = 11

