
Beyond
Performance
Testing

by:

R. Scott Barber

Part 8: Modifying Tests to Focus on Failure or
Bottleneck Resolution

Now  that  we  can  conclusively  reproduce  the  bottleneck,  slow  spot,  or 
failure and the stakeholders agree that it’s an issue worth addressing, what 
next?  In  this  article  we’re  going to  explore how to design and build  or 
modify  our  tests  to  focus  more  explicitly  on  the  item of  interest.  Since 
we’ve identified only the functional symptoms of the performance issue so 
far,  this  focusing  exercise  will  be  critical  to  the  process  of  determining 
what’s  causing  those  symptoms,  thus  starting  us  down the  path  toward 
resolving them.

This is the second of four articles on the theme I call “finding bottlenecks to 
tune,”  where  we’re  taking  a  step  beyond  just  performance  testing  and 
beginning to explore how to add real value to the development team. 

So far, this is what we’ve covered in this series:

Part 1: Introduction 

Part 2: A Performance Engineering Strategy

Part 3: How Fast Is Fast Enough?

Part 4: Accounting for User Abandonment

Part 5: Determining the Root Cause of Script Failures

Part 6: Interpreting Scatter Charts

Part 7: Identifying the Critical Failure or Bottleneck

This  article  is  intended for  mid-  to  senior-level  performance  testers  and 
members  of  the  development  team who  work  closely  with  performance 
testers. If you haven’t yet read Parts 5, 6, and 7 of this series, I suggest you 
do so before reading this article.

What the Development Team Needs to Know
“The  ability  to  focus  attention  on  important  things  is  a  defining  
characteristic of intelligence.”     — Robert J. Shiller, Irrational Exuberance 

After  you  report  the  symptoms  of  suspected  performance  issues  you’ve 
identified,  your  developers  may recognize the  symptoms and be  able  to 
resolve  them  in  short  order.  But  if  not,  they’re  going  to  need  more 
information, some of it in the form of metrics. If you’re a longtime reader of 
mine,  you  know that  I  generally  try  to  avoid  talking  exclusively  about 
metrics and like to pay at least as much attention to user experience, since 
metrics aren’t the whole story. In the case of chasing performance issues, 
though,  you  eventually  get  to  the  point  where  metrics  are  needed  for 

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006             1

http://www.perftestplus.com/resources/BPT1.pdf
http://www.perftestplus.com/articles/bpt7.pdf
http://www.perftestplus.com/resources/BPT6.pdf
http://www.perftestplus.com/resources/BPT5.pdf
http://www.perftestplus.com/resources/BPT4.pdf
http://www.perftestplus.com/resources/BPT3.pdf
http://www.perftestplus.com/resources/BPT2.pdf


evaluation. With that said, I’ll list some questions that point to the kinds of information and/or metrics 
that can help developers identify and/or isolate a performance issue.

Which related activities produce the same symptoms?

The very first thing developers ask once they acknowledge that the symptoms you’re reporting are real 
is “How did you get that to happen?” This is followed closely by “Is there any other way to make that 
happen?” Sometimes these questions are easy to answer. To repeat an example from Part 7, if you find 
out that searching for a book and searching for a store near you on a retail site are both slow, this 
allows the developers to narrow the scope of things they’ll need to evaluate.

Sometimes these questions aren’t so easy to answer, and you’ll need to ask the developers to help you 
determine which activities are related from their perspective so you can evaluate them. For example, 
you may learn that the only way those two searches are related is that they both have tables in the 
database, in which case testing other searches is less likely to produce the same symptoms. You may 
also learn that they share all the same code, and parameters are just passed into the generateSQL class, 
in which case you’ll want to know all of the activities that pass parameters into the generateSQL class 
so you can see if they cause the same symptoms.

The point is, the developers know which custom functions, classes, servers, tables, and so forth an 
activity touches. You generally won’t. You’ll often need the developers’ assistance to determine which 
activities are related before you start modifying your tests. Working with them, you should be able to 
identify which related activities demonstrate the same symptoms.

Which other activities are affected by the bottleneck?

The developers will also want to know which other activities display any symptoms during the test that 
created the critical symptom. For example, they’ll want to know it if the search page is very slow when 
searching by t and other users who are trying to search at the same time receive an internal server error. 
This is critical as it helps them identify potential causes of the symptoms. It’s also not always easy to 
detect, so ask the developers which related activities they suggest you explore for more information. 

What were the load characteristics of the test yielding the symptoms?

The next thing the developers want to know is what the load characteristics of the tests yielding the 
symptoms were. This isn’t just information like “100 users were accessing the system during the test 
that yielded the symptoms.” The developers need to know things like these:

• How many users were performing the activity before and during the appearance of the symptoms?

• What was their distribution in time (arrival rate)?

• What were other users doing before and during the appearance of the symptoms?

• With how few users can you observe the same symptoms?

In  case  you  may  have  missed  it,  the  answers  to  those  questions  are  metrics.  These  metrics  are 
specifically useful in this context. Still, they aren’t the whole story you’re telling, just some quantifying 
factors in the story. 

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         2



What data did you use to create the symptoms?

We know that  both  the  volume  and  the  complexity  of  data  accessed  can  have  a  huge  effect  on 
performance. For example, searching for all books whose titles contain the letter  t will certainly put 
more  stress  on  the  system than  searching  for  the  title  Lessons  Learned  in  Software  Testing.  The 
developers will want to know what data you used as input values to create the symptoms, and they’ll 
likely have other data they’d like you to try. We’ll discuss test variances more below.

What’s the configuration of the environment you’re testing?

When I start testing, I’m almost always told, “The environment is ready and it mirrors production.” As 
soon as I find a bottleneck suspect, though, someone almost always says, “What environment were you 
testing against? That doesn’t really match production. We need to change the settings to . . . ” While 
you may never know the exact configuration of the environment you’re testing, your developers will 
certainly need to know. The best you can do is help them by sharing the information you have.

What other metrics do the developers want you to collect?

On top of all that, the development team will normally ask you for a laundry list of metrics that you 
may not even understand, let alone know how to collect. It seems that on every project I get asked for 
at least one metric that I’ve never heard of. Don’t be daunted by this. Simply ask the developers to help 
you  identify  and  capture  the  metric  they  think  will  aid  them in  understanding  or  diagnosing  the 
performance issue. I’ve never had a developer react poorly to “I’m sorry, I really don’t know how to 
collect that data; could you help me?” If the developers don’t give you a list of other things they’d like 
to know, ask them. I’ve found that if they’re not asking for more information, it’s often a sign that they 
don’t have much faith in the results you’re presenting.

How to Design Tests to Get That Information 
Our next step is to design the tests that will get us the information the developers are looking for. This 
is usually not the difficult part; the difficult part is often the following step, which is creating the tests. 
When you’re designing the tests, don’t worry about how you’ll develop them with the tools you have 
available. Thinking about the capabilities of the tools at your disposal while designing will almost 
always lead you down the road of designing tests that are easy to implement, instead of tests that will 
provide immediate value. You don’t want to go down that road.

Ask Yourself “What If . . . ?” Questions

The first thing to do when trying to come up with tests that focus on a particular set of symptoms is to 
ask yourself, What would happen to these symptoms if . . .

• I eliminated all other user activity?

• I added more user activity?

• I used different data?

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         3



• I changed the load characteristics?

• I changed the delay times?

• I tested from multiple IP addresses?

• I used a different navigation path to get to this activity?

There are probably hundreds more questions you could ask, but this is a good start. Based on your 
answers,  you  can  decide  which  tests  to  design  first.  Maybe  you’re  more  interested  in  trying  out 
different  data  than multiple IP addresses based on your  symptoms. Some of  the “What  if  .  .  .  ?” 
questions you can answer right away with a quick manual test, while others will require specific tests 
built to confirm or deny your suspicions.

Ask Developers to Speculate

I’m always surprised by the number of folks who argue that the tester should know best and thus the 
developers shouldn’t be asked to speculate about which tests will  help them identify and diagnose 
performance issues. I believe that the test engineer should know best how to detect potential issues, but 
when it comes to exploiting an issue so that it can be diagnosed, experts on that particular system are 
needed. Ask your developers to speculate or guess what other tests will provide helpful information, 
and  then  do  everything  you  can  to  provide  those  tests.  They’re  often  exactly  the  right  ones.  As 
mentioned  earlier,  you  can  also  ask  the  developers  what  metrics  would  help  them  diagnose  the 
suspects, and then ask yourself and/or them what test will provide that metric. These are often the most 
difficult tests to design and develop. 

Evaluate Commands with Slow Responses

Another  good  source  of  information  about  how  to  design  appropriate  tests  comes  right  from 
TestManager after a test execution. We looked at TestManager when we were looking for bottleneck 
suspects.  Now that we have suspects, we should return to TestManager and look at  the individual 
commands that had slow responses. Each one of those commands is related to a specific requested 
item. Once you identify that item, you can search your log file for other instances of that item and add 
those to the list of things to test. We’ve talked about the different components of that process before, 
but I’ll summarize the process here.

Say you look at  the performance report  output  in TestManager and notice a  command that  had a 
particularly  slow  response.  For  instance,  in  Figure  1,  you  see  that  the  response  to  command 
GL_Jour~2.017 took 25.29 seconds, much longer than the responses to other commands. 

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         4



Figure 1: Identifying a slow command response in the report output
You can then find that command ID in the test  log and look at the General tab of the Log Event 
window for more information on that command ID. See Figure 2. 

Figure 2: Finding the command ID in the test log

Clicking the Virtual Tester Associated Data tab shows that the item being received was 
POST /psc/GDV01/EMPLOYEE/ERP/c/PROCESS_JOURNALS.JOURNAL_ENTRY_IE.GBL

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         5



See Figure 3.

Figure 3: Finding the object of the command ID in the test log

Now that you’ve identified the object related to the slow response time, you can search the entire log 
file to see what other activities call that object. You’ll remember from Part 5 that the log file is the d00 
file located at
[Drive]:\[RepositoryName]\TestDatastore\TMS_Builds\[BuildName]\[SubBuild]\

[TestRun]\perfdata\
and that we open the log file using a text editor such as Notepad. Finding other instances of objects 
related to the symptoms will certainly provide some insight into the cause of the symptoms, or at least 
point to some other things to test.

There’s a caveat to that, though. Often the problem turns out to be with a previous request/receive pair. 
If the previous receive returns unexpected data or an unrecognized failure, it may cause subsequent 
request/receive pairs to fail. You would evaluate this in the same way that you evaluate script failures, 
as discussed in Part 5. This doesn’t mean that the problem is necessarily a script failure — only that the 
process of finding the offending command is the same. Typically, if it’s a previous command that’s 
causing a symptom later on, that turns out to be a failure rather than a slow spot or a bottleneck, but not 
always. 

Think in Terms of Distinguishing Failures, Slow Spots, and Bottlenecks

Another thing to think about when designing tests to focus on suspects and symptoms is how you can 
design tests to distinguish whether the observed performance issue is actually a failure, a slow spot, or 
a bottleneck. Many of the considerations for test designs that we’ve already discussed in this article 
will help make the distinction, but it’s always a good idea when designing a test to ask yourself, Will 
this test help me determine if this issue is a failure, a slow spot, or a bottleneck? When the answer to 
that question is no, you should follow it up with, Will another test I’ve designed help me make this 
determination, or should I design a new test to do this?

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         6

http://www.perftestplus.com/resources/BPT5.pdf
http://www.perftestplus.com/resources/BPT5.pdf


Visualize and Prioritize 

Finally, once you’ve asked yourself and the developers all those questions and done some research on 
your own, you’ll have a whole list in your head of potential tests to create. The thing is, you’ll probably 
be given only a matter of days to track down information about these issues, not weeks. You simply 
won’t have time to develop and execute all of those tests. To pick the right tests to develop, you may 
want to do what I do, which is to visualize and prioritize. This is actually just a quick-and-dirty way to 
organize your thoughts about this list of tests you’ve just come up with. 

All I do is fill out a grid like the one in Figure 4 to keep my thoughts straight and help me decide which 
tests to develop first. 

Figure 4: Sample “Visualize and Prioritize” grid
This is normally something I sketch on a whiteboard, and the column heads are different almost every 
time. It really doesn’t matter how you keep track of the tests you come up with, as long as you have a 
way to remember one idea when the next one hits you and have a list to return to later after you’ve 
developed the first several tests and not found what you were hoping to find.

Modify Existing Tests

The quickest and easiest way to gather more information about a particular issue is to use your existing 
tests. Thinking through the information you’ll likely be interested in, the following modifications are 
ones that can be created quickly and often have large payback — especially in combination with one 
another — in terms of gathering that information:

• Eliminate all activities from your test suite that aren’t necessary to cause the symptoms and 
reexecute under various load conditions. This will help you pinpoint the parameters that lead to 
the symptoms plus  distinguish  between a  failure,  a  bottleneck,  and a  slow spot.  One thing to 
consider is extending the system timeouts to help determine if a symptom is a failure or not. 

• Reexecute using different data. For instance, if you’re doing a search, do a test with a set of data 
that returns a small number of items, and then another with a dataset that returns a large number of 
items, or maybe even all of the items. You may also want to execute a test that loops through a 
large number of potential data items to see if there may be some pattern to the symptoms. It’s 
possible that you could find that only searches for items that begin with, say, the letter b are causing 

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         7



the symptoms (unlikely, but not unheard of).

• Try various load characteristics. Don’t worry about whether the test reflects reality. Try faster 
and slower arrival rates, longer and shorter user delays, larger and smaller loads, larger and smaller 
percentages  of  users  performing  the  activity  displaying  the  symptoms.  These  variances  will 
normally  help  bracket  the  symptoms.  Maybe the  symptoms appear  only  when more  than  five 
people do an overlapping search regardless of what other volumes of activities are occurring.

In Part 9 we’ll discuss what data other than response times in TestManager to monitor during these 
tests.

Create New Tests

Sometimes  you’ll  have  to  record  and develop  new tests  to  accomplish  the  kinds  of  variance  just 
discussed. There are other situations where you’ll want to record and develop new tests as well. 

For example, to exercise activities that you and/or the development team have identified as related but 
that  weren’t  included in  your  initial  test  suite,  new tests  may be needed.  This  is  by far  the  most 
common reason to  create  new tests  at  this  phase  in  the  testing  effort.  Executing  tests  on  related 
functionality,  both  individually  and  collectively  with  the  tests  known to  generate  symptoms,  will 
generally distinguish between slow spots and bottlenecks. 

New tests may also be needed if there’s more than one way to accomplish a task that’s been identified 
as a performance issue. For instance, on one application I tested, searching for a particular customer on 
the “account maintenance” screen took nearly four times as long as searching for the same customer on 
the  “customer  maintenance”  screen.  At  first  we’d  only  tested  the  “account  maintenance”  screen 
because the  customer-related functionality  was intended to  be identical.  It  wasn’t  until  we finally 
created a new test to evaluate the related functionality on the “customer maintenance” page that we 
were able to track down the problem by comparing the SQL generated by the two pages.

Sometimes you may want to create a new test to try out a straight-line path to the symptoms even 
though you have an existing test that’s meant to do the same thing. If you’re having a particularly 
difficult time determining the cause of the symptoms, this cause may just be hiding in your script. 
Rerecord the simplest possible script (no splits, minimal datapools, no abandonment, and so forth) and 
see if you can recreate the symptoms. If not, do a close comparison of your scripts.

How to Build the Tests 
Now we get to the heart of the matter. How do you build tests to collect this next level of information 
using  the  Rational® TestStudio  software  and/or  other  tools?  Unfortunately,  there’s  no  cookbook 
answer. Every piece of information is found in a different way, and even that changes from application 
to application, platform to platform, and development style to development style. The best I can do is 
outline some basic techniques and suggest some circumstances where they’re most useful. In Part 9 
we’ll discuss in more detail how to use these tests in combination with other resources at your disposal 
to conclusively identify the cause of the performance issue.

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         8



Use Test Harnesses

I’ve seen and been part of lots of debates about what a test harness is. Instead of opening up that debate 
here,  let’s  agree  that  in  this  article  series,  the  term  test  harness means  any helper  application  or 
application modification created for the purpose of  making it  easier  to  use Rational  TestStudio to 
collect information about a performance issue.

Test harnesses can be used in many situations. For instance, in the example above with the “account 
maintenance” and “customer maintenance” screens, we built  a test  harness to help us evaluate the 
problem. The test harness was a simple Web page with an input box and a Submit button. We recorded 
a script that entered various SQL statements into that text box and clicked the Submit button. The 
Submit button bypassed most of the application we were actually testing and sent the SQL straight to 
the database. This test harness allowed us to quickly eliminate the database as the cause of the issue 
without going through the whole battery of tests.

It’s unlikely that you’ll be the one developing test harnesses. You’ll have to work closely with your 
development staff to create them. You should consider having test harnesses built whenever you can’t 
find another way to isolate a piece of information even though it seems like you should be able to get it 
using TestStudio. Often, once you start discussing test harnesses with your developers, they’ll have 
ideas for many test harnesses that will provide response time information they wouldn’t easily be able 
to obtain otherwise.

Is It Time to Tune?
Most of the time, after conducting new or modified tests that focus on the symptoms of confirmed 
performance  suspects,  the  development  team  will  have  enough  information  to  start  their  tuning 
exercise.  If  tuning starts  at  this  point,  you probably won’t  be  involved again until  the developers 
believe they’ve solved the problem, at which time you should reexecute all of the tests that previously 
revealed symptoms. 

In general, you should recommend tuning in cases where your tests determine that the suspect was 
actually a failure or a slow spot rather than a bottleneck. In the case of bottlenecks or inconclusive 
results, the topics we’ll discuss in Part 9 will likely be helpful. Fixing failures or slow spots, or even 
deciding to accept  the performance of  a  slow spot,  may not technically  be considered tuning,  but 
they’re modifications to either the application or the performance acceptance criteria that affect the 
performance-testing effort.

Summing It Up
Focusing tests on performance issues is normally a critical step in determining the actual cause of the 
performance issue and ultimately tuning it. In most cases, modifying or creating focused tests isn’t 
technically difficult but rather is an exercise in determining what tests or modifications will provide 
information of the highest value in the time you have to collect that information. These tests need to be 
created and executed quickly and efficiently to be truly useful to the development team. In Part 9 we’ll 
discuss other methods for collecting additional information related to these focused tests. 

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         9



Acknowledgments

• The original version of this article was written on commission for IBM Rational and can be found 
on the IBM DeveloperWorks web site 

About the Author
Scott Barber is the CTO of PerfTestPlus (www.PerfTestPlus.com) and Co-Founder of the Workshop on
Performance and Reliability (WOPR – www.performance-workshop.org).  Scott's particular specialties
are  testing  and  analyzing  performance  for  complex  systems,  developing  customized  testing
methodologies, testing embedded systems, testing biometric identification and security systems, group
facilitation and authoring instructional or educational materials.  In recognition of his standing as a
thought leading performance tester, Scott was invited to be a monthly columnist for Software Test and
Performance Magazine in addition to his regular contributions to this and other top software testing
print and on-line publications,  is regularly invited to participate in industry advancing professional
workshops  and  to  present  at  a  wide  variety  of  software  development  and  testing  venues.   His
presentations  are  well  received  by  industry  and  academic  conferences,  college  classes,  local  user
groups and individual corporations.  Scott is active in his personal mission of improving the state of
performance testing across the industry by collaborating with other industry authors, thought leaders
and expert practitioners as well as volunteering his time to establish and grow industry organizations.
 His tireless dedication to the advancement of software testing in general and specifically performance
testing is often referred to as a hobby in addition to a job due to the enjoyment he gains from his
efforts.

About PerfTestPlus
PerfTestPlus was founded on the concept of making software testing industry expertise and thought-
leadership available to organizations, large and small, who want to push their testing beyond "state-of-
the-practice"  to  "state-of-the-art."   Our  founders  are  dedicated to  delivering expert  level  software-
testing-related  services  in  a  manner  that  is  both  ethical  and  cost-effective.   PerfTestPlus  enables
individual experts to deliver expert-level services to clients who value true expertise.  Rather than
trying to find individuals to fit some pre-determined expertise or service offering, PerfTestPlus builds
its services around the expertise of its employees.  What this means to you is that when you hire an
analyst, trainer, mentor or consultant through PerfTestPlus, what you get is someone who is passionate
about what you have hired them to do, someone who considers that task to be their specialty, someone
who is willing to stake their personal reputation on the quality of their work - not just the reputation of
a distant and "faceless" company.

Beyond Performance Testing - Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
© PerfTestPlus, Inc. 2006         10

http://www.ibm-developerworks.com/

	Part 8: Modifying Tests to Focus on Failure or Bottleneck Resolution
	What the Development Team Needs to Know
	Which related activities produce the same symptoms?
	Which other activities are affected by the bottleneck?
	What were the load characteristics of the test yielding the symptoms?
	What data did you use to create the symptoms?
	What’s the configuration of the environment you’re testing?
	What other metrics do the developers want you to collect?

	How to Design Tests to Get That Information 
	Ask Yourself “What If . . . ?” Questions
	Ask Developers to Speculate
	Evaluate Commands with Slow Responses
	Think in Terms of Distinguishing Failures, Slow Spots, and Bottlenecks
	Visualize and Prioritize 
	Modify Existing Tests
	Create New Tests

	How to Build the Tests 
	Use Test Harnesses

	Is It Time to Tune?
	Summing It Up
	Acknowledgments

	About the Author
	About PerfTestPlus

