
User
Experience,
Not Metrics

by:

R. Scott Barber

Part 13: Working with Unrecognized Protocols
So you’re pretty confident in your ability to test a web-based application.
You’ve got some successful testing engagements behind you and you’re
feeling good. Now your boss comes to you and says…

“Great job on those performance tests! I’ve got another one for you. Bob
has built a custom application that needs to be performance tested. I’m sure
you can handle it. Oh, by the way, it doesn’t use HTTP. Good luck!”

This is the final installment of the “User Experience, Not Metrics” series,
which focuses on correlating customer satisfaction with your application’s
performance as experienced by users. This article is intended for
intermediate to advanced Rational TestStudio users. A general knowledge
of TCP/IP communications protocols will aid in the application of the
concepts discussed.

Communications Protocols
Thus far in the series all of our discussions have focused on scripts that used
the Hyper Text Transfer Protocol (HTTP). The HTTP protocol is the
predominant way that web servers communicate with web browsers. HTTP
is not a language, but rather just a standard by which data requested and
received. Let’s take a few minutes to discuss what you probably know
instinctively about HTTP, but may not have ever thought about consciously.
This will give us some common ground around which discuss other
protocols.

HTTP is essentially broken into a format to request files, a format for
responses to those requests and a standard format for all header files. HTTP
requests (see listing 1) typically request a file (HTML, GIF, JPG) to be sent
over the Internet back to the program requesting it, usually a web browser.
For each request the server may send back one or more responses. The
response includes text header (see listing 2) and the requested data (see
listing 3).

 "GET /solutions/papers/whitepapers.jsp HTTP/1.1\r\n"
 "Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, applicat"
 "ion/vnd.ms-powerpoint, application/vnd.ms-excel, application/msword,
*/"
 "*\r\n"
 "Referer: http://www.noblestar.com/"
 "Accept-Language: en-us\r\n"
 "Accept-Encoding: gzip, deflate\r\n"
 "User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)\r\n"

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 1

 "Host: www.wmata.com\r\n"
 "Connection: Keep-Alive\r\n"
 "\r\n";

Listing 1: Sample HTTP Request

 "HTTP/1.1 200 OK\r\n"
 "Server: Netscape-Enterprise/4.1\r\n"
 "Date: Sat, 18 Jan 2003 21:03:51 GMT\r\n"
 "Content-type: text/html; charset=Cp1252\r\n"
 "Set-cookie: NSES40Session=e0f%253A3e29bba2%253A224c54f45191a4ac;path=/;"
 "expires=Sat, 18-Jan-2003 21:33:51 GMT\r\n"
 "Transfer-Encoding: chunked\r\n"
 "\r\n"

Listing 2: Sample HTTP Receive Header

 "<HTML>\r\n"
 "<HEAD>\r\n"
 "<TITLE>Solutions - White Papers</TITLE>\r\n"
 "<LINK REL=STYLESHEET TYPE=\"text/css\" HREF=\"/css/main.css\">\r\n"
 "<SCRIPT LANGUAGE=\"JavaScript\" SRC=\"/js/menu.js\"></SCRIPT>\r\n"
 "<SCRIPT LANGUAGE=\"JavaScript\" SRC=\"/js/topmenu.js\"></SCRIPT>\r\n"
 "</HEAD>\r\n"
 "<BODY BACKGROUND=\"/images/back_pat.gif\" TOPMARGIN=0 LEFTMARGIN=0 RIGH"
 "TMARGIN=0 MARGINHEIGHT=0 MARGINWIDTH=0>\r\n"
 "<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0>\r\n"
 " <TR BGCOLOR=\"#000066\" VALIGN=TOP>\r\n"
 " <TD COLSPAN=7><A HREF=\"/index.jsp\"\r\n"
 " onMouseOver=\"clearMain()\" onMouseOut=\"reset()\" onClick=\"set(''"
 ",0)\"><IMG\r\n"
…

Listing 3: Sample HTTP Receive
HTTP is a high-level communication protocol, it does not concern itself about such things as data
packets and retries, these are handled by the TCP/IP communication layers. TCP/IP is a low-level
communication protocol. (For more information on TCP/IP see this overview published by Yale
University. http://www.yale.edu/pclt/COMM/TCPIP.HTM) HTTP could be thought of as a sub-
protocol to TCP/IP.

If you were to draw a comparison to written mail, the letter would be the file being requested or
received, HTTP would be the rules dictating how the envelope is addressed, and TCP/IP is the postal
service responsible for picking up and delivering the letters.

Conceptually, all other communications protocols work the same way – it’s just the rules and formats
that change. Some protocols transmit data in formats that are relatively easy for human eyes to read
(like HTTP), while others transmit data in a compressed or encrypted format that is essentially

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 2

unreadable to human eyes (like HTTPS).

Rational TestStudio Vu Scripts captures traffic at the communication protocol level, as do all of the top
load generation tools. So you may be wondering, if the traffic is captured, what makes a particular
protocol either “supported” or “unsupported”? The “support” that is being referred to is script
generation support for playback. Just capturing the traffic isn’t enough to be able to playback that
traffic in a way that simulates real users. It is possible to capture and playback many unsupported
protocols successfully, but there are additional considerations.

Supported Protocols

Rational TestStudio officially supports scripts generated from the capture of traffic from the following
communications protocols:

• TCP/IP Socket
• HTTP / HTTPS
• DBLIB
• DCOM
• IIOP
• Jolt
• ODBC
• Oracle
• SQL Server
• Sybase
• Tuxedo

What this means is that if the application you are testing uses one of the protocols above, TestStudio
will generate scripts that can more or less be played back as-is. As we have seen through previous
articles in this series, recorded scripts do often require some editing prior to multi-user playback. This
editing is just part of performance testing regardless of whether or not the protocol is supported by the
tool and not part of the discussion of this article.

TCP/IP Socket can be an exception that is discussed in more detail below.

Unsupported Protocols

Every communication protocol that is not on the list in the previous section is considered to be
unsupported by TestStudio. Some common examples of unsupported protocols are:

• FTP (File Transfer Protocol)
• SNMP (Simple Network Messaging Protocol)
• SMTP (Simple Mail Transfer Protocol)
• POP3 (Post Office Protocol - 3)
• WAP (Wireless Application Protocol)

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 3

• VoIP (Voice over Internet Protocol)

Just because these protocols are unsupported does not mean that TestStudio Vu Scripts cannot be used
to performance test applications using these protocols. Any TCP/IP type communication can be
captured using the correct Session Record Options. All of the protocols listed above are TCP/IP
protocols as HTTP is. You will see below that scripts recorded using the TCP/IP Socket recording
options will look different than HTTP scripts, but remember that all of these protocols are just different
ways to format requests and receives based on the applications and types of data being sent.

To configure these options, in Rational Robot select Tools -> Session Record Options from the menu
bar. Select Network recorder on the Method tab (figure 1) and manual filtering on the Generator
Filtering tab (figure 2). While on the Generator Filtering tab, click the Advanced button to ensure that
the both Well-known protocols and unrecognized protocols options are checked (figure 3).

Figure 1: Network recorder Option

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 4

Figure 2: Generator Filtering

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 5

Figure 3: Generator Filtering, Advanced

If you know the name or IP of the server that you will be recording against, you can specify that server
by going to the Method: Network tab (figure 4) adding the server information by pressing the Manage
Computers button and filling in the appropriate information. Finally, select the server that you have
added. This is done to ensure that “extra” network traffic isn’t unintentionally captured. This should
only be done if you are certain that all of the traffic that you are interested will be from that server.

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 6

Figure 4: Method: Network tab

Once you have configured these settings and recorded your first script you will see that communication
you have captured falls into one of two categories. I refer to these “Clear Text” protocols and
“Encoded” protocols. I put those terms in quotes because they are not always technically correct, but
they are descriptively accurate.

In a script of a “Clear Text” protocol you can essentially read what you recorded. For instance, listing
4 shows a script segment of SMTP traffic.

#include <VU.h>
int n;
{
Dmail_yahoo_com = sock_connect("SMTP001", "mail.yahoo.com:25");

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 7

set Server_connection = Dmail_yahoo_com;
n = sock_isinput();
sock_nrecv ["SMTP002"] n;

sock_send "helo john.doe.com\r\n";
n = sock_isinput();
sock_nrecv ["SMTP003"] n;
sock_send "mail from: sbarber@noblestar.com\r\n";
n = sock_isinput();
sock_nrecv ["SMTP006"] n;
sock_send "rcpt to: cwalters@noblestar.com\r\n";
n = sock_isinput();
sock_nrecv ["SMTP008"] n;
…

Listing 4: Sample “Clear Text” Protocol Script

In this script segment, you can see that the mail message that was recorded was sent from sbarber (me)
to cwalters (my officemate who delivered this topic in a presentation for the Rational User’s
Conference, 2002 – that presentation is available here {link}). While you may not know all of the
details of the SMTP protocol, you will be able to recognize much of the text.

Listing 5 shows a sample of an “Encoded” protocol script. You will notice that this section of script is
completely un-readable to human eyes. This is a section of script recorded against a client/server
application that was transmitting a short statement in a comment field.

sock_send
"`14030000010116030000`8~Pv\b`d3`pB`80aa31c3865e8ea9bf`(7`c4f0d0`&MCl`8787"
"fb56f0a9ae36f632d9de548ae7dd29ed72ff55e5`;@\tDu`952bacc8170300017de03dde"
"173a9620fb`;C`d941e07011`i1`a2dbb05db693dcb9f3df35fbe82f141c9ca65c90cc7e"
"08a3a7509024f775842089b3`Ul`c2`%lO`0e152d886de3d028d609`~wx`d7222e04e689"
"bfa64ce897`+.`eb5d17`&c`e379db44da`!G\fvc]`d0240cc5f2c520fdef`F4`0753b0aa"
"a81a96dac3d49764fbe47d7f4202`_#`19cd7683146af4ec`c{`00a2fa`AJ`5c31b61d18"
"34ebbe0f`_b`c49a7a10f3600297a59a7eebbe389bbad9a88fb137c9e9ecea`_z`01db11"
"ab3ceb89`p^h\f`d79085d8740de756052293a2fbdb7afcb8a43381dd3193b8`K3`e414`u"
"Q`f0ea`=_`8c`k?[,`dc`t.`048d2fc9cf741a7f08a6bfd129bff74f0dc9efe6ab6bcd24"
"d3c4e42d007f`S,f$,;`c5e0b2ae0ef01ae13b1673b70ccc`*5`aa96b73ccaf8`a;`d9`s"
"H`8245c5002cb4859396ad10a8de09cde283160a0c4b86fbf3a194024d8a`d/`0bb63bf9"
"`#oB`9a1bf78adf`c*`d7b6eccae9d3c1c411f0b077841fe5cbd9`L69`9ad497`WiW`b49d"
"4d870d0cee618d`o";

sock_nrecv ["test006"] 520;

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 8

Listing 5: Sample “Encoded” Protocol Script

In both cases there are two basic things to notice. First, it is worth noting that TestSudio handles the
protocol headers (and therefore socket connections) automatically regardless of the data that is being
transmitted (see listing 6). It is generally safe leave everything that isn’t between the quotes (“”) in the
sock_send block.

hostname_1 = sock_connect("test004", "hostname:port");
set Server_connection = hostname_1;

sock_send
 "somekindofcontent”;

sock_nrecv ["test005"] 146;
sock_disconnect(hostname_1);

Listing 6: Sample Socket Connections

The second part is that between the quotes (“”) in the sock_send block that we discuss in the sections
below.

Working with Unsupported “Clear Text” Protocols
Working with “clear text” protocols is really pretty straight forward. TestStudio will handle the
manipulation of the socket connections for you. All you have to do is manipulate the parameters you
may want to vary (or datapool). For purposes of demonstration, a modified version of the SMTP script
from listing 4 is shown below. The script was modified to send the mail message to a variety of
recipients as entered into a datapool.
#include <VU.h>
int n;
{

DP1 = datapool_open("smtp_datapool");
datapool_fetch(DP1);

Dmail_yahoo_com = sock_connect("SMTP001", "mail.yahoo.com:25");

set Server_connection = Dmail_yahoo_com;
n = sock_isinput();
sock_nrecv ["SMTP002"] n;

sock_send "helo john.doe.com\r\n";
n = sock_isinput();
sock_nrecv ["SMTP003"] n;

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 9

sock_send "mail from: sbarber@noblestar.com\r\n";
n = sock_isinput();
sock_nrecv ["SMTP006"] n;
sock_send "rcpt to: “
+ http_url_encode(datapool_value(DP1, ename"))+
”@noblestar.com\r\n";
n = sock_isinput();
sock_nrecv ["SMTP008"] n;
…

DATAPOOL_CONFIG " smtp_datapool " OVERRIDE DP_SEQUENTIAL DP_SHARED
DP_NOWRAP
{
 INCLUDE, "ename", "string", "cwalters";
}

Listing 7: Modified SMTP script

It is also possible to build custom functions for relatively simple protocols like this one, but detailing
that process would take too long for the confines of this article. For an example of custom SMTP
functions that allow you to build SMTP scripts without even recording, see the PowerPoint slideshow
{link} that Chris Walters and I presented at RUC 2002.

Working with Unsupported “Encoded” Protocols
“Encoded” protocols are more complicated. The key to working with them is identifying what changes
between each user, and what series of characters represents the changes between users. Detecting these
differences and handling them programmatically is not always easy, but the basic process is simple. To
determine what changes and what needs to be handled use these steps.

Step 1: Record the script that you will ultimately want to play back (script 1)

Step 2: Record that script again, EXACTLY the same way you did before (script 2)

*Step 3: Record that identical script yet again (script 3)

Step 4: Compare script 1, script 2 and script 3 to identify all of the differences in between the quotes
(“”) in the sock_send block.

Step 5: Parameterize those differences from the _response file. (see articles 11 and 12 for more
information on capturing return data from the _response file using regular expressions.

Step 6: Record the script again, except this time change any transactional data that will be different
among users (i.e. username, password, account number, etc) (script 4)

Step 7: Compare script 1 and script 4 and identify all of the differences in between the quotes (“”) in
the sock_send block that were not identified in Step 4.

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 10

Step 8: Add datapools to handle varied data identified in Step 7.

Step 8a: Since it may not be easy to determine what ‘encoded’ characters represent different
usernames, passwords etc, you may need to record several scripts changing only a single parameter to
either determine the encryption or simply capture all of the different options you wish to datapool.
This can be a very tedious process.

*Often Step 3 is unnecessary, but there is no way to know until after you determine the patterns of
differences among scripts. It is always safer to compare 3 scripts initially to be sure that you have
identified the entire pattern.

Comparing these files visually can be very difficult. To assist in this process I have found two quality
file compare tools. CSDiff http://www.componentsoftware.com/products/csdiff/download.htm and
ExamDiff http://www.prestosoft.com/ps.asp?page=edp_examdiff are similar programs that
automatically identify differences between two similar files. Simply launch the program and browse to
the recorded scripts (*.s files) and it will show you the differences between these files. I actually
recommend both as they are each better with different types of files. Screenshots comparing the same
section of code from each are included below.

Figure 5: CSDiff screenshot

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 11

http://www.prestosoft.com/ps.asp?page=edp_examdiff
http://www.componentsoftware.com/products/csdiff/download.htm

Figure 6: ExamDiff screenshot
One thing that makes this comparison process easier for known, or documented, protocols is the
Request For Comment (RFC) for that protocol. Any protocol that isn’t completely custom or
proprietary will have an RFC on the Internet Engineering Task Force (IETF) home page
http://www.ietf.org/. The RFC’s will describe the exact specification for what characters and positions
in the sends and receives represent.

Now You Try It

Every protocol varies so drastically that there really is no way to create a “typical” example or exercise.
Added to that, I do not have access to any application that uses an unsupported protocol, either “clear
text” or “encoded” that you would also have access to. The best ways to practice what we have
discussed in this article are below.

For “clear text” type unsupported protocols, open an internet mail account (like Hotmail or Yahoo),
record and edit scripts of sending mail to yourself. Ensure that you do not use more than a single user

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 12

http://www.ietf.org/

during playback.

For “encoded” type unsupported protocols, record, edit and playback scripts against any SSL enabled
website. If you use the settings above for recording, SSL recordings will look and act very much like
an unsupported “encoded” protocol. Just make sure that if HTTP is one of your manual filtering
options upon script generation, it is excluded.

Summing It Up
Just because a protocol is unsupported, does not mean that Rational TestStudio cannot be used for
performance testing an application using that protocol. Proper configuration of recording settings and
identifying subtle differences among recorded scripts can make a performance test that seemed to be
impossible, completely accomplishable. While scripting unsupported protocols will likely take a little
more time, I’m sure you will find that the extra time is justified when you find the first performance
related defect.

 About the Author
Scott Barber is the CTO of PerfTestPlus (www.PerfTestPlus.com) and Co-Founder of the Workshop on
Performance and Reliability (WOPR – www.performance-workshop.org). Scott's particular specialties
are testing and analyzing performance for complex systems, developing customized testing
methodologies, testing embedded systems, testing biometric identification and security systems, group
facilitation and authoring instructional or educational materials. In recognition of his standing as a
thought leading performance tester, Scott was invited to be a monthly columnist for Software Test and
Performance Magazine in addition to his regular contributions to this and other top software testing
print and on-line publications, is regularly invited to participate in industry advancing professional
workshops and to present at a wide variety of software development and testing venues. His
presentations are well received by industry and academic conferences, college classes, local user
groups and individual corporations. Scott is active in his personal mission of improving the state of
performance testing across the industry by collaborating with other industry authors, thought leaders
and expert practitioners as well as volunteering his time to establish and grow industry organizations.
 His tireless dedication to the advancement of software testing in general and specifically performance
testing is often referred to as a hobby in addition to a job due to the enjoyment he gains from his
efforts.

About PerfTestPlus
PerfTestPlus was founded on the concept of making software testing industry expertise and thought-
leadership available to organizations, large and small, who want to push their testing beyond "state-of-
the-practice" to "state-of-the-art." Our founders are dedicated to delivering expert level software-
testing-related services in a manner that is both ethical and cost-effective. PerfTestPlus enables
individual experts to deliver expert-level services to clients who value true expertise. Rather than
trying to find individuals to fit some pre-determined expertise or service offering, PerfTestPlus builds
its services around the expertise of its employees. What this means to you is that when you hire an
analyst, trainer, mentor or consultant through PerfTestPlus, what you get is someone who is passionate
about what you have hired them to do, someone who considers that task to be their specialty, someone

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 13

who is willing to stake their personal reputation on the quality of their work - not just the reputation of
a distant and "faceless" company.

User Experience, Not Metrics - Part 13: Working with Unrecognized Protocols
© PerfTestPlus, Inc. 2006 14

	Part 13: Working with Unrecognized Protocols
	Communications Protocols
	Supported Protocols
	Unsupported Protocols
	Listing 4: Sample “Clear Text” Protocol Script
	Listing 5: Sample “Encoded” Protocol Script
	Listing 6: Sample Socket Connections

	Working with Unsupported “Clear Text” Protocols
	Listing 7: Modified SMTP script

	Working with Unsupported “Encoded” Protocols
	Summing It Up
	 About the Author
	About PerfTestPlus

