
32 BETTER SOFTWARE MAY/JUNE 2005 www.StickyMinds.com

By Scott Barber

Executives and managers,
get your performance testing teams

out of the pit
and ahead of the pack

High-Performance Testing

www.StickyMinds.com MAY/JUNE 2005 BETTER SOFTWARE 33

As an activity, performance testing is widely

misunderstood, particularly by executives and

managers. This misunderstanding can cause a variety

of difficulties—including outright project failure.

This article details the topics that I find myself teaching

executives and managers time and time again.

Learning, understanding, and applying this knowledge

on your performance testing projects will put you

on the fast track to success.

Executives—
Start your Engines . . .

Insist on Experience
Experienced performance testers will

speak your language and guide you
through the process of meeting your
goals, even if you can’t yet verbalize
those goals. Experienced performance
testers not only know how to relate to
executives in terms of business risks,
short- and long-term costs, and implica-
tions of schedule adjustment but they
also know how to explain their trade
without all the jargon and techno-babble.
Experienced performance testers are
used to explaining the relevance of the
latest “performance buzz” to your system.
They have spent years learning how to
extract performance goals from such
words as “fast,” “maximum through-
put,” and “xxxx concurrent users”—
none of which has meaning in isolation.

Ja
so

n
D

ew
ey

/S
to

ne
/G

et
ty

 Im
ag

es

Consider this example: An executive
dictates that, “Each page will display in
under x seconds, 100 percent of the time.”
While this is both quantifiable and
testable, it has no meaning on its own. It is
the job of the performance tester to define
the conditions under which the goal
applies, in other words, to determine the
goal’s context. To have meaning, this
goal must address such things as client
connection speed, number of people
accessing the site, and types of activities
those people are performing. These are
all variables that affect page response
time. A more complete goal would take
this form:

Using the “peak order” workload
model, under a 500-hourly user load,
static pages will display in under x
seconds, dynamic pages in under y
seconds, and search/order pages in under
z seconds, 95 percent of the time with no
errors when accessed via corporate LAN.

Experienced performance testers also
know how to collect and present data in
ways that show whether the system is miss-
ing or meeting goals, in what areas, and by
how much, without requiring the viewer of
this data to have any special technical
knowledge of the system under test.

Notice that I use the term “goal”
instead of “requirement” when speaking
about performance. I do this because I
have never been involved in a performance
testing project that delayed or canceled a
release due to performance test results
not meeting the stated criteria. I also
choose the term “goal” because virtually
no one expects the performance to be as
good as he wants prior to Release One.
What people hope for is “good enough
for now.” There is an assumption that
performance will be improved during
testing, that the production environment
will resolve the performance issues
detected in the test environment, and/or
that adoption will be gradual enough
to deal with performance problems
as they arise in production. An
experienced performance tester will be
able to help you convert your feelings
about performance into goals and project
plans. Above all, performance testers
want you, the executive, to understand
performance testing so you can make

Finally, invite the performance tester to
educate you along the way. In helping
you to expand your knowledge about
performance testing, the tester will gain
a wealth of knowledge about what is
most important to you in terms of
performance. This mutual understanding
and open communication are the best
things that can happen to the overall
performance of a system.

Begin Performance Testing Before
the Application Is Fully Functional

There is a common perception that
performance testing can’t effectively
start until the application is stable and
mostly functional—meaning that
performance test data won’t be available
until significantly into a beta or qualifi-
cation release. This leaves virtually no
time to react if, or more realistically
when, the results show that the application
isn’t performing up to expectations.

In actuality, an experienced
performance tester can accomplish a
large number of tasks and generate a
significant amount of useful data even
before the first release to the functional
testing team. He can create and gain
approval of User Community Models
and test data and can gather these
kinds of statistics:

• Network and/or Web server
throughput limits

• Individual server resource utilization
under various loads

• Search speeds, query optimization,
table/row locking, and speed versus
capacity measurements for databases

• Load balancing overhead/capacity/
effectiveness

• Speed and resource cost of security
measures

Some developers and system architects
argue that the majority of these tasks
belong to them, but developers rarely
have the ability to generate the types of
load needed to complete the tasks effec-
tively. Adding the performance tester to
these tasks early on will minimize the
number of surprises and provide
foundational data that will greatly

sound, informed decisions. As an executive,
you have several important decisions to
make about an application during
the development lifecycle. Most of the
decisions center around three fundamental
questions:

• Does it meet the need/specification
for which it was developed?

• Will the application function
adequately for the users of the system?

• Will the user of the system be
frustrated by using it?

The experienced performance tester
knows the importance of these ques-
tions—and their answers—and will
work with you (literally by your side at
times) to help you answer the questions
in terms of performance.

TAKE THE LEAD . . .
First and foremost, you must make it

known that you expect experienced
performance testers on your projects,
not “fools with tools” as some folks
refer to them. Set the expectation early
that the performance tester is expected
to interact with you, and that his job is
to provide you with the information you
need to make sound business decisions
about performance issues and risks.
Always make a point to personally
review performance goals to make sure
they contain enough context to make
them meaningful for executive-level
decision making.

Review the performance test plan
and deliverables and ask yourself the
following questions:

• Will this assist with “go-live”
decisions?

• Is it likely that the results from this
plan could lead to a better experience
for the end-user?

• Is this likely to be representative of
the actual production environment?

• Is this likely to be useful to developers
if tuning is necessary?

• Will it provide an answer to each
specific requirement, goal, or service
level agreement?

• Is taking action based on the results
part of the plan?

34 BETTER SOFTWARE MAY/JUNE 2005 www.StickyMinds.com

speed up the process of finding root
causes and fixing performance issues
detected late in the project lifecycle.

TAKE THE LEAD . . .
This one is pretty obvious. Plan to

have a performance tester assigned to
the project from kickoff through roll
out. Encourage the development team
to use the tester’s skills and
resources as a development tool, not
just as a post-development validation
tool. It is worth noting that, depending
on the project, the performance tester is
used for performance-related activities
between 50 and 100 percent of the time.
The upside is that, because of the skillset
noted in the “Skills and Experience”
sidebar, this individual can be fully
utilized as a supplemental member of
virtually every project team. There is
one caveat: Make it clear that performance
testing is this person’s primary responsi-
bility—not an additional duty. This
distinction is critical because “crunch
time” for performance testing typically
coincides with “crunch time” for most
of the other teams with which the
performance tester may be working.

Don’t Confuse Delivery with Done
“Delivery” is an informed decision

based on risks and should not be con-
fused with “done.” Anyone who has
been around testing for a while knows
that the system will be deployed when
management thinks holding up the
release is riskier than releasing it, even if
that means releasing it with unresolved
or untested performance issues. Howev-
er, releasing the software is no reason to
stop performance testing.

Most applications have a rollout plan
or an adoption rate that ensures that the
peak supported load won’t occur for a
significant period of time after the go-live
day. That is prime time to continue
performance testing. There are fewer
distractions, the existence of actual live
usage data rather than predictions or
estimations, the ability to observe
performance on actual production hard-
ware, and often the availability of more
resources. If there isn’t a maintenance

release scheduled soon enough to get the
post-release fixes into production before
usage reaches the performance limit, surely
it’s more cost effective to schedule one
than to contend with a performance issue
when it presents itself in production.

TAKE THE LEAD . . .
Plan to continue performance testing

after the initial release. Plan to push
maintenance releases with performance
enhancements prior to the first expected
load peak. Incorporating these plans
into the project plan from the beginning
allows you to release software when
performance is deemed acceptable for
early adopters rather than holding up
releases until the performance is tuned
for a larger future load.

Test Managers—
Start your Engines . . .

Look for Skills and Experience
Quality performance testers are senior

members of the project team in terms
of depth and breadth of skills and
experience. You probably have read
similar statements before, but I assure
you that this isn’t “the same ol’ message
in a new suit.” When asked, “What
skills should I look for in a performance
testing candidate?” I reply, “What you
want is a mid-level everything.”
The “Skills and Experience” sidebar
lists specific skills to look for in a
performance tester.

TAKE THE LEAD . . .
This really comes down to employee/

consultant selection and training on which
you likely have significant influence. In my
experience, a top-notch performance
testing candidate should be able to field
many to most of the questions that an
interviewer would ask of a mid-level
developer/DBA/systems administrator.
Obviously, this is not the expectation
for most functional testing candidates.
For instance, when interviewing a func-
tional test candidate, you may ask ques-
tions such as, “How comfortable are
you working directly with code?” When
interviewing a performance test candidate,

www.StickyMinds.com MAY/JUNE 2005 BETTER SOFTWARE 35

SKILLS AND EXPERIENCE

Performance testing requires a unique
skillset that is above and beyond what
is generally expected for members of a
functional testing team and in many
cases more broad than what is
generally expected of development
team members. In addition to expertise
with their tool(s) of choice, I specifically
look for the following experience and
skills (roughly listed in decreasing
order of importance):

• User community modeling and
simulation

• Communication protocol of system
under test (i.e., HTTP/S for Web
applications)

• Networking/Network architecture
(i.e., MCSE for Microsoft networks)

• Statistics (for meaningful presentation
and interpretation of data)

• Graphical presentation of complex
information

• Application exploration, such as
asking, “What if I do X while
someone else does Y and twenty
people do Z, all right before the
nightly back-up kicks off?”

• Reliability, stability, and security
testing

• System monitoring/administration
(i.e., memory usage, disk I/O, etc.)

• Functionality testing

• Skill/experience as a trainer and/or
facilitator

• Business analysis

• Human factors/usability studies

• Programming languages (specifically
the languages of the load generation
tool and the application under test)

• Database design/administration

Note that I don't mean for this list to be
exhaustive. These are the skills that
I feel are “required” for one to be
considered a senior performance tester
over a range of software projects.

it is completely appropriate to ask
questions such as, “What was the most
complex custom function you ever had
to code to enable your load generation
script to accurately represent the expected
usage scenario? What made the function
complex? Do you still have the code
and/or could you re-create it easily?”

Select Testers Who Know Their Tools
Quality performance testers need

quality tools—and need to know how to

use them. This is the closest thing to a
universal rule I advocate. The only way
to conclusively determine application
performance under load is to put load
on the system. While it is possible, and
under certain circumstances valuable, to
use what I refer to as the “hire a bunch
of interns” method to generate load on
a system, this method makes it almost
impossible to replicate scenarios that
uncover performance issues.

I am not aware of a way to generate
reproducible load without some kind
of load generation/simulation tool.
Whether that tool is purchased, open
source, or custom built is basically irrel-
evant. What matters is that load scenarios
are reproducible, modifiable, and match
predetermined user community models.

This may sound obvious to some,

performance issues. Only if those
questions are answered to your satisfac-
tion should you consider approving a
strategy that does not include the use of
a load simulation/generation tool.

TAKE THE LEAD . . .
As a manager or executive, you have

a key role in obtaining both a tool and a
performance tester. I hope that it is clear
that you should either hire the performance
tester first, then provide that person
with the tool he recommends for the
job; or select a tool, then hire a perform-
ance tester with significant experience
and success using that tool.

To avoid the “tool-driven test
design” trap (see the sidebar “Tool-Driven
Test Design”), don’t implicitly trust the
performance tester. Even the best
performance testers can develop blind
spots when it comes to their “pet tool.”
I have been guilty of that myself on a
few occasions, one of which led to sixty
hours of work between 6:00 p.m. Friday
and 8:00 a.m. Monday to correct my
oversight. Just to be safe, during the test
design process instruct those involved to
“Forget about the tool for now and just
design the test. We’ll worry about how
we are going to implement the design
later.” After that, listen and observe. If
you hear things such as “but the tool
can’t . . . ” or “that will take too long
with the tool . . .”, remind the team of
the initial instructions and make a note
to discuss acceptable alternatives with
the performance tester at a later time.

Get the Facts to Back Up
the Predictions

Extrapolating production loads from
data collected on test systems is at best
“black magic.” There are a few, very
specialized individuals who can make these
predictions with any degree of confidence
or accuracy. These individuals, who are
rarely performance testers, tend to project

but my experience is that it’s not as
obvious as it should be. No matter what
a tool can do in theory, it actually only
does what it’s “told” to do. A good
performance tester with expertise using
a “non-first-tier” tool of his choice will
almost always be able to create a more

effective performance test and generate
more accurate and useful results faster
than the best performance tester with a
new or unfamiliar tool.

Selecting a tool because of a vendor
relationship, market review, or adver-
tisement will not immediately lead to
high-quality performance testing—no
matter how good the tool is. I doubt
many would debate that the single most
important measure of the quality of a
tool is your performance tester’s ability
to use it to generate useful, accurate,
and timely results.

Plan to use a load generation tool as
part of your performance testing. If a
performance test strategy is proposed
that does not include the use of a tool,
ask how tests will be validated, repeated,
and modified to isolate observed

36 BETTER SOFTWARE MAY/JUNE 2005 www.StickyMinds.com

TOOL-DRIVEN TEST DESIGN

Consider this. When people design their dream homes, do they start by taking
inventory of their toolboxes and then design in only those features that they can
build with their tools? Of course not. They design their homes, then determine
what tools or contractors they need to obtain or hire. Only if they are unable to
obtain the proper tools or cannot afford an appropriate contractor do they modify
their designs with an acceptable alternative. The same concept should be applied
to performance test design.

The most common mistake made by managers and testers alike is what I refer
to as “tool-driven test design.” Having agreed (I hope) that effective performance
testing requires a load generation/simulation tool, we need to beware of building
tests around that which is either easy to do using the tool or that which the
vendor claims the tool does well. All of the tools on the market—
including open source tools—were developed either to test a wide variety of
applications or to test one specific application. But either way they were not
developed to test your application—which demonstrates that what the tool
facilitates may or may not apply to your specific application or your testing goals.

IN ACTUALITY, AN EXPERIENCED PERFORMANCE TESTER CAN ACCOMPLISH A
LARGE NUMBER OF TASKS AND GENERATE A SIGNIFICANT AMOUNT OF USEFUL
DATA EVEN BEFORE THE FIRST RELEASE TO THE FUNCTIONAL TESTING TEAM.

(Continued on page 50)

50 BETTER SOFTWARE MAY/JUNE 2005 www.StickyMinds.com

the performance based on rather complex
mathematical models that they began
building prior to the first line of code ever
being written. Anyone else who claims that
he can predict the performance of an appli-
cation on production hardware based on
the results of testing on test hardware that
is not virtually identical is likely waving a
magic wand of estimation and assumption.
It isn’t accurate to say, for example, that
the production environment has twice as
many servers, so it will support twice as
many total users. Without actual data to
go on, it is equally as likely that doubling
the number of servers will degrade
performance rather than improve it.

TAKE THE LEAD . . .
Always demand to know the assump-

tions and review the calculations and
data that contribute to any predictions.
More importantly, ensure that part of
your project plan involves at least one
load test on production hardware. With
proper planning a performance test that

(Continued from page 36)
HIGH-PERFORMANCE TESTING

what we do with our emotions. With self-
regulation, we can choose how to
express our emotions instead of letting
our emotions control us. Self-regulation
also means we can manage our moods,
not just stew in them. Pat may be in a bad
mood, but she doesn’t need to take it out
on those around her.

Social Skills
Social skills help us empathize with

other people, see others’ points of view,
and share their concerns. Social skills help
us build bonds, collaborate with others,
and create a friendly atmosphere—all
good things for the group with which you
work. Pat isn’t building any bonds with
Marc or Jenny and is depriving herself of
their insight, help, and expertise.

My friend’s boss may think he’s making
a smart choice by pushing his staff solely to
develop their technical skills. But he’s likely
paying a price in higher stress, lower pro-
ductivity, and dampened work satisfaction.
So if you really want to improve results,
don’t just pay attention to technical skills.
As workers in a technical field, we’re all
pretty smart—and truly smart, successful
people pay attention to the skills that help
them work well with others. {end}

Esther Derby is one of the rare breed of
consultants who blends the technical issues
and the managerial issues with the people-
side issues. She is well known for her work
in helping teams grow to new levels of
productivity. Esther coaches
technical people who are
making the transition to
management and is a Certified
Scrum Master. Her articles
have appeared in Better Software (formerly
STQE), Software Development, Cutter IT
Journal, and CrossTalk. She writes regular
columns for StickyMinds.com and
Computerworld.com, and publishes the
quarterly newsletter, “insights”.

verifies predictions and/or identifies
implementation errors typically takes
only two to four hours. I often have seen
those hours be the most valuable risk mit-
igation measure of the entire project.

The Finish Line
From the start, executives and

managers set the pace for the performance
testing component of their projects. This
responsibility carries with it a need to be
educated about performance testing,
what it is, what it isn’t, and what consti-
tutes reasonable expectations. This
article has provided an educational
foundation while hopefully making sense
out of some of the most common
misconceptions related to performance
testing in the industry today. {end}

Scott Barber is the CTO for PerfTestPlus,
Inc. His specialty is context-driven
performance testing and analysis for
distributed multi-user systems. Contact
him at sbarber@perftestplus.com.

(Continued from page 52)
THE HARD TRUTH ABOUT SOFT SKILLS

!
Have the Last Word!

If you have a point to make or
a side to take on issues and trends

that affect the industry,
we want to hear from you.

Please send your submission to
editors@bettersoftware.com.

