
18 BETTER SOFTWARE JUNE 2007 www.StickyMinds.com

G
ET

TY
IM

A
G

ES



www.StickyMinds.com JUNE 2007 BETTER SOFTWARE 19

When Industry Standards

Don’t Apply

By Scott Barber



20 BETTER SOFTWARE JUNE 2007 www.StickyMinds.com

No Industry Standard
It feels like hardly a single day has

gone by in the past six years that some-
one hasn’t asked me:

“What is the industry standard re-
sponse time for a Web page?”

And in the past six years, the answer
hasn’t changed a bit. So, if the answer
hasn’t changed, why am I still getting
asked the question on a daily basis?

The answer is simple: It’s because
there are no industry standards. How can
there be? Think about how you use the
Web. How long are you willing to wait
for your homepage to display complete-
ly? How long are you willing to wait to
view your family’s online photo album?
How long are you willing to wait for
your tax software to confirm that your
return has been submitted successfully?
Are those numbers the same when you

are at home as when you are at work?
How about when you are using the wire-
less connection in an airport?

Your actual numbers don’t really mat-
ter. The point is that no one number can
possibly be the answer—at least until
Web pages start regularly having re-
sponse times that are under .25 seconds.
Until then, what you are measuring is a
combination of your current expectations
about Web page response time and your
determination to accomplish tasks via the
Web.

You see, by the early 1980s, cognitive
psychologists had determined that a de-
lay of longer than one quarter of a
second between an action and a response,
whether on a computer or otherwise,
would noticeably impact human per-
formance, increasing error rate and the
probability of a user’s switching to a

competing task. So as far as I’m con-
cerned, until our Web sites make it to
that .25 second barrier, the real question
is not “What is the industry standard?”
but rather “What response time will the
users and stakeholders of my Web site or
application find acceptable?” (See the
StickyNotes for more on response time
and user satisfaction.)

The Alternative to
Standards

Experience reports from top perform-
ance testers shared during peer
workshops such as the Workshop on Per-
formance and Reliability (see the
StickyNotes for a link) suggest that quan-
tified performance criteria handed down
from on high are sometimes met—but
frequently ignored. These reports further
suggest that even when performance cri-



www.StickyMinds.com JUNE 2007 BETTER SOFTWARE 21

teria are met, they rarely correlate to
happy users if they can’t relate back to
qualitative criteria. Finally, these experi-
ences suggest that determining the
qualitative performance criteria enables
teams to overcome quantification, tech-
nical, logistical, and managerial
challenges related to achieving those cri-
teria. This article explains how to
determine and quantify those criteria. Be-
fore I do that, I’d like to make an
important distinction between categories
of performance criteria, namely require-
ments and goals.

Performance Requirements are those
criteria that are absolutely non-nego-
tiable due to contractual obligations,
service level agreements, or critical busi-
ness needs. Any performance criterion
that will not lead unquestionably to a de-
cision to delay a release pending proof of

meeting that criterion is not absolutely
required and, therefore, not a require-
ment.

Performance Goals are those criteria
that are desired for release but have an
inherent degree of flexibility. For in-
stance, if a response time goal of three
seconds is set for a particular transaction
but the actual response time is deter-
mined to be 3.3 seconds, it is likely that
the stakeholders will choose to release the
application and defer tuning that transac-
tion for a future release.

Before you can effectively determine
the performance goals and requirements
of an application, you will need to deter-
mine the transactions for which you are
trying to characterize the performance.
To be testable, goals and requirements
need to correlate to some kind of user
transaction. There are too many ap-

proaches to selecting transactions to ad-
dress here, but the four most common
and important categories are frequently
used transactions, performance-intensive
transactions, business-critical transac-
tions, and transactions of special interest
(possibly due to contractual obligations
or stakeholder visibility).

Once you identify the transactions
that are to have performance require-
ments and goals, it’s time for you to
engage the entire team—from executive
sponsor to end-user—to determine exact-
ly what those requirements and goals
should be. You need to get their opinions,
expressed in their own words, on how
each transaction or group of transactions
should perform. Once you collect that
data subjectively, it becomes your job to
convert that data into a testable form and
record it as appropriate for your project.

Extract Requirements
& Goals

There are several common sources of
performance goals and requirements:
project documentation and contracts,
stakeholders, regulatory standards and
competitive baselines, and users. Gener-
ally speaking, performance-requirement
and goal-capturing efforts include the fol-
lowing activities (though not necessarily
in any particular order):

1. Analyze written statements of re-
quirements.

2. Determine whether or not competi-
tive baselines are relevant to your
project (capture them if they are).

3. Capture and analyze verbal state-
ments of requirements (by people
who have the power to make them
stick).

4. Capture the opinions of other peo-
ple internal to the company
(opinions turn into goals).

5. Collect information from users
(user goals).

6. Quantify the information gathered
during activities 1 through 5.

7. Repeat the analysis throughout the
project.

While it is generally desirable to cap-
ture requirements and goals early in the
software development lifecycle, it is typi-
cally valuable to revisit those criteria



22 BETTER SOFTWARE JUNE 2007 www.StickyMinds.com

periodically throughout the project. No
matter how well you capture perform-
ance criteria at the beginning of a project,
contracts, perceptions, business drivers,
and priorities change as new information
becomes available. Additionally, you are
likely to find that items initially classified
as requirements become goals and vice
versa. Keep that in mind as you traverse
the project lifecycle. Finding out that the
terms of a contract have changed while
you are presenting what you believe is

your final report puts your project in
roughly the same place as never having
known the terms of the contract in the
first place.

WRITTEN STATEMENTS
As testers, we are used to analyzing

documented requirements; the challenges
in this case lie in obtaining and interpret-
ing these documents. Often, contracts are
viewed as proprietary and are not made
available for review by non-executives.
When facing roadblocks to reviewing
contracts, it is important for you to be
able to explain that the specific language
and context of statements related to ap-
plication performance are critical to
determining compliance. For example,
the difference between “transactions
will” and “on average, transactions will”
is tremendous. The first case implies that
every transaction will comply every sin-
gle time. The second case is completely
ambiguous.

Frequently, the most important per-
formance-related statements can be
found in vision and marketing docu-
ments. Vision documents often hold
subjective performance goals, such as “at
least as fast as the previous release,”
“able to support a growing customer
base,” and “performance consistent with
the market.” Marketing documents are
notorious for containing claims about
product performance. I recommend treat-
ing any such claims as requirements

because public statements can be used as
ammunition by reviewers, users, or—in
the worst case—lawyers hired by those
users.

As I discussed at the beginning of this
article, there are very few performance-
related standards outside of life- or
safety-critical devices and applications,
but there are some. Remember to do
your homework and find out whether or
not any apply to your project.

Whether or not you are specifically re-
quested to evaluate any of these items,
stakeholders are almost always grateful
when a performance tester validates—or
invalidates—contractual obligations,
marketing claims, and regulatory stan-
dards before the product goes live. In the
same way, stakeholders typically want to
know how their product compares to the
competition, even if they don’t specifically
ask. Since I view providing stakeholders
with data that will help them make in-
formed decisions about the quality of the
product to be a significant part of my job

as a tester, I believe that testing against all
of these items is important. Your role or
mission may be different.

COMPETITIVE BASELINES
More frequently than having explicit

or regulatory standards for performance,
market expectations and competition cre-
ate de facto standards. Every application
in every industry vertical will have differ-
ent methods and sources for determining
its competitive landscape. For example, if
your project is an eCommerce applica-
tion, there are a large number of Web
sites against which users will compare—
either consciously or subconsciously—the
performance of your application. In this
case, it is likely valuable to choose one or
more of the most popular eCommerce
sites to compare your application against.
Naturally, you can’t run load tests against
a competitor, but you can collect re-
sponse time information by periodically
surfing the site and from sites such as
www.keynote.com. The bottom line is
simply this: Don’t assume your site won’t
be compared against others simply be-
cause there is no published standard; de
facto standards are more likely to set
your users’ expectations than formal
standards, anyway.

VERBAL STATEMENTS
As you know, stakeholders always

have opinions when it comes to perform-
ance, and frequently they express these
opinions in terms that appear to be quan-
tified and absolute, even though they are
rarely well understood. The key to col-
lecting opinions from influential
stakeholders is not only to capture the
statements but also to determine the in-
tent behind those statements. For
example, a stakeholder with a back-
ground in telecommunications may say
that she expects the application to have
“five 9s of reliability.” What she proba-
bly doesn’t realize is that this equates to a
near impossible standard for a Web site
of being unavailable for roughly five min-
utes per year (about one second per day).
The reality is that many Web sites could
be down for an hour per day—if it’s the
“right” hour—without customers even
noticing. In fact, it’s hard to imagine that
Web users would notice an additional
one-second delay, even if it happened

hwynn
Note
Scott:
Please clarify for me what this "they" is referencing the performance criteria or the users.

Thanks!



once a day. It is easy to imagine a person
being outraged by a dropped phone call
at the same time every day due to a one
second outage, but that same person
wouldn’t even notice the interruption in a
Web connection. Asking good questions
is the key to determining the real intent
behind stakeholders’ performance-relat-
ed statements. In this particular case, the
intent behind “five 9s of reliability” is
uninterrupted service. So a more appro-
priate requirement may be “No more
than 1 percent of users abandon their
task as a result of excessively slow re-
sponse times.”

The process behind capturing the
opinions of team members who cannot
individually make their opinions stick is
the same. The difference is that these
opinions should be treated as goals
rather than requirements. The reason for
gathering these goals is that these people
often have different perspectives of what
is and is not acceptable performance. For
instance, a customer service representa-
tive may tell you that the top priority is
that customer information comes up
quickly when he is assisting an upset cus-
tomer. This statement could lead to an
entirely different set of performance cri-
teria for the portion of the application
that the customer service representatives
use than for the self-service portion that
the customers use.

See the StickyNotes for sample start-
ing questions and potential follow-up
questions to help you capture the intent
behind verbally expressed opinions.

SEPARATE REQUIREMENTS
FROM GOALS

If you haven’t done so already, it is
useful to distinguish between require-
ments and goals prior to quantifying
them. Requirements need to be much
more carefully and completely quantified
than do goals. A statement of “approxi-
mately three seconds to render the
requested Web page,” for example, is a
perfectly respectable performance goal
but a completely untestable performance
requirement due to the ambiguity of the
word “approximately.”

Fortunately, identifying requirements
is easy: Focus on contracts, legally bind-
ing agreements or standards, and any
performance-related criteria that will

www.StickyMinds.com JUNE 2007 BETTER SOFTWARE 23

cause the executive stakeholders to hold
off on releasing the software until those
criteria are met. These criteria may or
may not be related to specific business
transactions, but if they are, ensure that
those transactions are included during
performance testing.

At first blush, identifying goals seems
purely mechanical; if it hasn’t already
been tagged as a requirement, it must be
a goal. Your challenge is dealing with
goals that contradict requirements. In
this case, your best bet is to take these
conflicting items to stakeholders for addi-
tional clarification. It may be that the
goal is superseded by the requirement—
in which case, you can simply remove the
goal from the list. It may also be the case
that the stakeholders will determine that
the requirement is overly aggressive and
needs to be modified. Either way, the
sooner these conflicts are resolved, the
less confusion they will cause later.

QUANTIFY GOALS
Some goals are relatively easy to

quantify. For example, you can quantify
a goal of “no slower than the previous re-
lease” by either referencing the most
recent production performance monitor-
ing report or by executing some
single-user, light-load, and heavy-load
tests against the previous release, record-
ing the results to use as a baseline for
comparison.

Frequently, the captured goals that
need to be quantified aren’t strictly com-
parative goals—they are user satisfaction
goals. Quantifying end-user satisfaction
or frustration is more challenging, but far
from impossible. All you really need is an
application and some representative
users. You don’t need a completed appli-
cation; a prototype or demo will do for a
first pass at quantification. For example,
with just a few lines of code in the
HTML of a demo or prototype, you can
control how long it takes each page,
graphic, control, or list to load.

Using this method, you can create sev-
eral versions of the application with
different response characteristics. Then
have the users try each version, telling
you in their own terms whether they find
that version to be unacceptable, slow,
reasonable, fast, etc., using whatever
terms the existing goals use. Since you

know the actual response times, you can
start equating those numbers to the users’
reported degrees of satisfaction. It’s not
an exact science, but it turns out to be
good for goals—especially if you follow
up by asking the same questions about
satisfaction with the application every
time you put it in front of someone. This
allows you to collect more data and en-
hance your performance goals as the
application evolves.

If your anticipated users are regular
Internet users and you have designed
your study to account for their typical
connection speed, you probably will no-
tice a tight grouping in your data. If,
however, your anticipated users are not
regular Internet users, their responses are
likely to vary widely. In this case, you
probably will want to analyze the data
from those groups separately; however,
focus on the regular Internet users be-
cause once people start using the Internet
their expectations get reset very quickly.

The best thing about this method is
that your team makes a great “control
group” for a sanity check. Let’s face it:
Who complains more about a poorly per-
forming Web site than people who
design, develop, and test Web sites for a
living? Typically, you will find that your
team has slightly less tolerance for poor
performance than your representative
users, but the results should be fairly
close. When the users are demanding bet-
ter performance than your team or when
your team is satisfied with dramatically
worse performance than your users, you
know your study—or your team’s expec-
tations about users—is flawed.

QUANTIFY REQUIREMENTS
If you are lucky, most of the perform-

ance requirements that you captured are
already quantified and testable. If you are
a little less lucky, the requirements that
you captured aren’t quantified at all, in
which case you can follow the process
described above for quantifying perform-
ance goals. If, however, you are unlucky,
the performance requirements that you
collected are only partly quantified and
partly or wholly untestable.

If a requirement is extracted from a
contract or existing marketing document,
it likely cannot be changed. So when you
are faced with a requirement such as



24 BETTER SOFTWARE JUNE 2007 www.StickyMinds.com

“three-second average response time,” or
“2,500 concurrent users,” you have to
figure out both what those requirements
mean and what additional information is
required to make them testable. There is
no absolute formula for this. The basic
thought process is to interpret the re-
quirements precisely as written in
common language, supplement them
with the most common or expected state
for the application, and then get your ex-
tended, testable requirement approved by
the stakeholder who would be held re-
sponsible if someone were to legally
challenge compliance with the require-
ments after the product goes live.

See the StickyNotes for examples of
quantifying performance requirements.

REPEAT THE ANALYSIS
Though we may wish it were other-

wise, performance requirements and
goals are bound to change during the
course of the project. Sometimes they get
more stringent as more information be-
comes available about the needs of the

customer, and sometimes they become
less stringent as the pressure to beat a
competitor to market with new function-
ality takes precedence over being faster
upon release. This is normal and healthy
(at least to a point; like most anything
else, it can go too far). While it often is
not necessary or valuable to redo the en-
tire analysis from scratch, it is both
important and valuable to periodically
check back in with the people and docu-
ments that led to the goals and
requirements in the first place to see
what, if anything, has changed. As the
product is nearing completion, it is often
useful to bring the current performance
measurements with you when checking
in so that people can react to them. That
reaction is often the best prerelease indi-
cation you will get of an individual’s
feelings about the performance of an ap-
plication.

Final Thoughts
Until Web sites start displaying re-

sponse times under .25 seconds, we need

to conduct performance tests against
legally binding requirements and make
our best attempt to quantify the satisfac-
tion of our users, remembering that
users will be more satisfied with consis-
tent performance than intermittently
fast performance. {end}

Scott Barber is the chief technologist,
CEO, and president of PerfTestPlus, Inc.
His specialty is context-driven perform-
ance testing and analysis for distributed
multi-user systems. Contact him at
sbarber@perftestplus.com.

eLearning 1/2 Page
Horizontal Ad Here

Sticky
Notes

For more on the following topics go to
www.StickyMinds.com/bettersoftware.

� Response time and user satisfaction
� Workshop on Performance and

Reliability
� Sample questions
� Quantifying performance

requirements


