

When You're Out to Fix Bottlenecks,
Be Sure You're Able to Distinguish Them
From System Failures and Slow Spots

ottlenecks are likely to be
lurking in your application.
Here’'s how you as a performance

tester can find them. By Scott Barber

So you found an odd pattern in your scatter chart that appears
to be a bottleneck. What do you do now? How do you gath-
er enough information to refute the inevitable response,

“The application is fine, your tool/test is wrong”? And how
do you present that information conclusively up front so you
can get right down to working collaboratively with the devel-
opment team to solve the problem?

Through years of experience as a performance testing
consultant, I've learned something very important. It’s not
safe to assume that most people really know what a bottle-
neck is—even if you’ve been doing performance testing for
a long time and use the term “bottleneck” in everyday
speech—particularly when it is contrasted with a system fail-
ure or a slow spot. To provide a teaching tool, I coined “Scott’s
Eight Basic Rules for Software Bottlenecks,” which I’ll share
with you below.

“Webster’s Millennium Dictionary of English” (Lexico
Publishing Group, 2003) defines bottleneck as: “n: a nar-
rowing that reduces the flow through a channel; v I1: slow
down or impede by creating an obstruction; 2: become nar-
row, like a bottleneck....”

This definition is understandable and hints at the origin
of the term (referring to the narrow part of a jar or bottle),
but it is most useful to us if we note what it doesn’t say as well
as what it does say:

e “reduces the flow,” not “ceases the flow”

* “slow down or impede by creating an obstruction,” not

“stop by creating an obstruction”

® “become narrow,” not “become impassable”

I summarize this as follows:

Rule 1: A bottleneck is a slowdown, not a stoppage. A stop-

continued on page 24 »

Scott Barber is chief technology officer at PerfTestPlus, Inc. His spe-
cialty is context-driven performance testing and analysis for distributed
multiuser systems. Contact him at sbarber@perftestplus.com.

www.stpmag.com ¢ 21

PERFORMANCE TUNING

A: A SIMPLE PIPE BOTTLENECK

llb SQ. IN.

<« continued from page 21

page is a failure. Something else the
dictionary definition doesn’t mention
that will become relevant to us is “load”
or “volume.” The fact that the defini-
tion says nothing about the cause of a
bottleneck suggests that it shouldn’t
be assumed that a bottleneck exists
only under load or volume. In my
experience, most folks assume that
bottlenecks don’t exist unless a certain
“trigger load” is applied to a system.
This is both contrary to the definition
of bottleneck and often untrue when
applied to software systems, thus:

Rule 2: Bottlenecks don’t only exist
under load. A useful comparison can
be made, at least conceptually, between
the flow of water through a pipe system
and the flow of activity through a soft-
ware system. To that end, let’s take a
look at bottlenecks from a hydrody-
namics perspective.

Figure A shows the simplest possi-
ble version of a bottleneck in a pipe
(you may notice that the drawing at
first glance resembles a bottle). One
can see that more water could flow
through the section of pipe on the left
than on the right, if they existed in iso-
lation. The arrows in this diagram
depict velocity, or the speed at which
the water is actually moving through
the pipe; the shorter the arrow, the
slower the flow. Notice that the water
is moving more slowly in the larger-
diameter side of the pipe. This is a clas-
sic example of a queue.

In terms of the flow rate, the water
in the wider part of the pipe must vir-
tually stop and wait for an opening in
the narrower section of the pipe, and
thus it flows very slowly until it reach-
es the “release point,” roughly where
the narrower section of the pipe

24 e« Software Test & Performance

4 SQ. IN.

!

VEL=4

begins. Once it reaches the release
point, the water starts flowing much
faster. That “stop and wait” period is
a queue. The bottleneck is the cause
of the queue; it is not the queue itself.
What’s important to note here is that
the place where the pipe narrows is the
bottleneck, but in fact the water flows
most slowly just before the pipe begins
to narrow. This brings us to:

Rule 3: The symptoms of the bot-
tleneck are almost never observed at
the actual location of the bottleneck.
In hydraulics, there’s another useful
concept: the “critical” bottleneck,
defined as the one bottleneck that,
unless resolved, will dictate the flow
characteristics of a system. In Figure
B, you can see three sets of obstacles
restricting the flow of water through
the pipe. It’s easy to see that obstacle
2 is restricting the flow the most. In
this case, obstacle 2 is the critical bot-
tleneck, meaning that removing
obstacles 1 and 3 won’t improve the
flow of water through the pipe. More
simply put:

Rule 4: The critical bottleneck is the
one bottleneck along a particular user
path, the removal of which will improve
both performance and the ability to
find other bottlenecks. Exploring crit-

ical bottlenecks introduces us to the
concept of multiple paths through a
system. When you extend a system
beyond a single pipe into a closed sys-
tem, you often add alternative paths
through that system. Figure C is an
example of a closed hydraulic system.

The difficulty of detecting bottle-
necks in a system increases nearly expo-
nentially with the number of possible
paths through that system. In Figure C
you can see that if there were a bottle-
neck in the pipe on the right side, the
water could flow through the pipe in
the center instead. This could lead to
the appearance of a bottleneck in the
center pipe, even though the bottle-
neck isn’t there (see Rule 3). Thus it’s
important to remember:

Rule 5: If you have multiple paths
through a system and think there’s a
bottleneck, you should isolate each path
and evaluate it separately. In the system
depicted in Figure C, you can see some
items other than pipes—a pump, valves
and a reservoir. If you think of the pipes
as your network and the other items as
your hardware (Web server, routers and
so forth), you quickly come up with:

Rule 6: The bottleneck is more like-
ly to be found in the hardware than in
the network, but the network is easi-
er to check. When people started
using the term “bottleneck,” the con-
cept of software hadn’t even been
invented. That fact alone should make
us realize that the term probably has
a special meaning when applied to
software. Often, the term is used to
refer to anything perceived to be slow
in a software system, but this use is
imprecise and should be avoided.
Consider this scenario: Suppose one
page on a Web site has several large
images on it. When a user requests
this page, it may take a long time to

B: MULTIPLE BOTTLENECKS

MAY 2005

PERFORMANCE TUNING

load. But unless downloading the
graphics causes some other activity in
the system to slow down, it’s not a bot-
tleneck; it’s just a slow page, or what
I call a “slow spot.”

A definition in “Load Testing for
eConfidence” (a free book from Segue
Software authored by Stefan Asbock)
describes a bottleneck as “a point in a
Web application where congestion and
delay occur, slowing down the process-
ing of requests and causing users to
experience unacceptable service delays.”

The key to this definition is the word
“congestion.” Unless an observed slow-
ness causes some other activity in the
system to slow down, it’s not a bottle-
neck; it’s just a slow spot. The next rule
summarizes this:

Rule 7: Unless other activities
and/or users are affected by the
observed slowness or its cause, it’s not
a bottleneck but a slow spot. In the
course of defining “bottleneck,” we’ve
made some distinctions that I’d like to
spend a little more time on. The first
is the distinction between a bottleneck
and a failure. I think I’ve made it clear
that a bottleneck is a slowdown, not a
stoppage, meaning that the expected
outcome is eventually achieved, regard-
less of how long it takes. For example,
if you wait a long time but the request-
ed Web page does eventually display

C:A CLOSED HYDRAULIC SYSTEM

RESERVOIR

properly, you’ve encountered either a
slow spot or a bottleneck. If, however,
you wait and eventually are presented
with an error page instead of the
requested Web page, this is a failure.
The interesting twist to this distinc-

26 e Software Test & Performance

tion is that sometimes a very minor
change can transform the failure back
into a bottleneck. Consider the exam-
ple above. It’s entirely possible that in
the second situation above, a timeout
(failure) occurred due to a Web server
setting. Changing that setting and re-
executing your test may result in all
activities being completed successfully,
but taking an unacceptable amount of
time and slowing down all users—in
other words, a bottleneck.

For our purposes, any time an error
occurs, whether caused by a bottleneck
or not, that error is a failure (you may
prefer to call it a bug, a defect, an issue
or an area of interest) and should be
reported as such. When that failure pre-
vents other users from completing their
tasks in the expected manner, it’s a crit-
ical failure.

The main difference between a bot-
tleneck and a slow spot is that a bot-
tleneck has widely felt performance
effects. A single large graphic can cause
an annoying slow spot that may need
to be resolved, but unless there are just
tons of people downloading that graph-
ic (a bottleneck caused by a popular
activity) or your Web server is under-
powered (a bottleneck caused by insuf-
ficient infrastructure), it’s just a slow
spot that has no real effect on the rest
of the system.

DIRECTIONAL
CONTROL VALVES

I’'m making a big deal of these dis-
tinctions because as we continue our
discussion about bottlenecks, we’ll see
that we will often find failures and slow
spots while we’re chasing bottlenecks,
and we’ll need to distinguish among

them in order to be able to take appro-
priate action.

Identifying Bottleneck Suspects
There are as many ways of identifying
bottleneck suspects as there are people
who’ve observed a slowdown when
working on a computer. It’s our job as
performance testers to identify as many
of those suspects as possible and then
sort, categorize, verify, test, exploit and
try to help resolve them.

Let’s discuss some common ways to
identify bottleneck suspects. For now,
we won’t worry about whether these sus-
pects might turn out to be failures or
slow spots instead of bottlenecks.

Most performance testers like to
identify bottleneck suspects visually,
using graphs and charts. To that end,
let’s take a look at some common ones.

Figure D is an example of a “re-
sponse time by test execution” chart.
Looking at this chart, you’ll immedi-
ately be able to see that there is a dra-
matic slowdown in response times
between 150 and 200 users. While this
doesn’t tell us what the bottleneck is, it
does give us a good indication of where
to focus our search for one.

Scatter charts, such as the one
shown in Figure E, are my favorite
analysis tool, because of the ease with
which you can identify bottleneck sus-
pects using them. Simply put, any pat-
tern that shows more than one dot
(outlier) outside of your predefined
acceptable performance levels reveals
a potential bottleneck.

In addition to charts and graphs,
user observations are another key
method of identifying bottleneck sus-
pects. Personal observation is one of
your best tools for identifying suspect-
ed bottlenecks. As you're creating
scripts, you’'re using the application.
You get to “feel” what the performance
is like, and you get a good idea of what
types of activities cause the application
to perform differently (better or worse)
before you ever execute your first load
test. These observations are extreme-
ly valuable, not only as a method of val-
idating your scripts, but also as a means
of identifying bottleneck suspects. Don’t
assume that your tool is better at detect-
ing bottlenecks than you are. The ulti-
mate users of the system are people,
not load-generation tools, and that

MAY 2005

PERFORMANCE TUNING

D: RESPONSE TIME BY TEST EXECUTION

alone makes your opinion—based on
observation—more valuable than the
numbers the tool reports.

Ultimately, other people will start 60
using the system, generally while test- o

ing it. These folks will find all kinds 2 50
of failures, slow spots and bottlenecks, §

whether they realize it or not. It’s () 40

important to talk to them and even GEJ 30
observe them periodically to see and =

hear what they think of the system 2
from a performance perspective. A S
simple comment such as “I don’t %
a4

10
remember that search taking that I I I
long in the last version” is a big red 0 _J—_

flag that a bottleneck may be hidin 100 100 100
& : yoe e L-AN- |50 LAN 1100 LAN}L0 LAN 200 2N 128Kcbs [56.6Kbs | 26.8Kbs
somewhere in the search activity. The ser sers sers Users | Users | Users
hat flag is that th
best part about that flag is that the mHome Page| 559 | 9.08 | 10.14 | 1011 | 4821 | 11.42 | 24.85 | 33.89
search could have seemed pretty fast
mPage 1 0.75 | 0.74 1.49 | 237 |[41.22 | 6.80 | 14.10 | 27.09

to you if you’d never used the pre-
ceding version. Don’t assume that
your personal observation will result
in the same suspects as the observa-
tions of a casual user will reveal.

Confirming Suspects

After you identify a list of bottleneck
suspects, the next step is to confirm
them. Confirming a suspect won’t nec-
essarily confirm that the suspectis a
bottleneck; rather, it will only verify
that you’ve encountered some kind of
performance issue that warrants fur-
ther research.

The key to confirming a suspect is
the ability to reproduce it. Until you
can do that, the suspect is uncon-
firmed; and although unconfirmed
suspects aren’t necessarily invalid,
they’re generally given lower priority
than confirmed suspects.

The single most important require-
ment for confirming a bottleneck sus-
pect is the ability to reproduce the
results that you or others have iden-
tified as indicating the suspect—that
is, the symptoms. If the symptoms
can’t be reproduced, it’s often the
case that the observed condition that
led to identifying the suspect was
caused by something unrelated to the
test. The easiest way to do this is typ-
ically to reproduce those results by
repeating the exact test that displayed
the results in the first place.

If the suspected bottlenecks were
first observed while you were using a
tool, you should try to do whatever you
can to reproduce the symptoms man-

MAY 2005

ually. It’s always possible that your test
itself is causing a symptom that real
users won’t encounter. Always validate
the accuracy of your scripts before con-
sidering a suspected bottleneck that
was detected by a script to have been
confirmed. Even then, you’ll want to
try to reproduce that suspected bot-
tleneck manually—both while no one
else is on the system, and while the test
is executing with the load at which the
suspect bottleneck was first detected.
The ability to observe the symptoms
under one or both of these scenarios
confirms a bottleneck suspect.
Additionally, if you observe symp-
toms of a bottleneck using tools, be sure
you can reproduce those symptoms
with similar tests—preferably with some
variances, such as time of day, load,
varying data or additional activities that
seem to be unrelated to the symptoms.
The ability to reproduce the symptoms
in similar situations is a strong indica-
tor that the issue deserves further
research and is therefore a confirmed
bottleneck suspect. These tests also
tend to provide extremely useful infor-
mation to the developers, who ulti-
mately will be tuning the performance.
While you’re confirming your sus-
pects, you should try to reproduce the
symptoms with the simplest test (man-
ual or automated) possible. For in-
stance, try to reproduce the symptoms
without load, or without performing
any other activities while logged in as

that user. It’s not absolutely necessary
to be able to recreate the symptoms of
the suspected bottleneck with a mini-
malist test, but it will answer one of the
first questions that the stakeholders are
bound to ask and will aid in your abili-
ty to demonstrate the suspect.

Just as with reproducing results
using minimalist tests, reproducing
results or symptoms using not-so-simi-
lar tests will help you demonstrate the
existence of the suspect. It’s also a big
step toward identifying the differences
among a slow spot, a failure and a bot-
tleneck. For example, a not-so-similar
test may show that searching for a book
and searching for a store near you on
a retail site are both slow. If only search-
ing for a store near you were slow, you
might be tempted to think that some-
thing specific to that search was slow—
a slow spot—but knowing that both
types of searches are slow may lead you
to think that the database is poorly
tuned—that is, a bottleneck.

Reporting Confirmed Suspects
Effective reporting of confirmed sus-
pects is extremely important—

and tricky. You're often met P — N
with skepticism, disbelief, N

defensiveness or dismis-
siveness. The first thing
to remember is that

you're not alone.
Every performance

tester who’s ever report-

www.stpmag.com ¢ 27

PERFORMANCE TUNING

E: RESPONSE VS.TIME INTO TEST SCATTER

=lalx

2000 H 3

R e r”‘

B
e x-n.?.-p‘a-:": %JJE‘-—Q’;*
: h !

il 10000

00

ed a suspected issue has faced this. The
second thing to remember is that if
you’ve followed the approach outlined
above, you have a confirmed, repro-
ducible suspect to report. If you report
it well, no one will be able to refute that
it’s a valid suspect. On the other hand,
if you present your suspects poorly,
overstate or understate them, or don’t
report them at all, they may never get
addressed. It’s our job as performance
testers to ensure that these suspects get
taken seriously and addressed appro-
priately. Above all, if you want to be tak-
en seriously, remember this:

Rule 8: When reporting bottleneck
suspects, don’t assume that you know
the cause; just report the symptoms.
More specifically, don’t report sus-
pected bottlenecks in a way that
implies fault. Do describe all of the
symptoms you’ve identified, not just
the one you think is most relevant.
Don’t speculate as to the cause of the
bottleneck, even if you think you
know what it is. Do describe all of the
ways you’ve found to cause the symp-
toms. Don’t get defensive when chal-
lenged—it might really be the fault of
your test—and always be prepared to
support your claims.

Some other hints that I've found
useful when reporting suspected bot-
tlenecks include:

® Report verbally. Nothing improves

your credibility or intra-team
communication more than taking
the time to discuss the symptoms

28 e Software Test & Performance

rather than just e-mailing an

observation.
® Report visually. As the old adage
goes, “a picture is worth a

thousand words.” Just make sure
that the picture tells the story you
want it to.

® Report via demonstration. Virtually
everyone will want to “see and feel”
the bottleneck, especially man-
agers, executives and end users,
none of whom have a great
interest in technospeak.

What the Development Team
Needs to Know
After you report the symptoms of sus-
pected performance issues you've iden-
tified, the developers may recognize
the symptoms and be able to resolve
them in short order. If not, they’re
going to need more information. Let’s
review some of the most common ques-
tions the development team is likely to
have.
How did you get that to happen? See the
section on reproducing results, above.
Which related user activities produce the
same symptoms? Related activities can
help developers determine what object,
function, module or hardware com-
ponent is causing the symptoms.
Which other activities are affected by the
bottleneck? This also helps the develop-
ers narrow down the potential causes.
How many (or how few) users were per-
Jorming the activity before and during the
appearance of the symptoms? Bottlenecks

don’t only exist under load, but know-
ing the load at which they become
noticeable is critical to the tuning
process.

What was the distribution in time (arrival
rate) of the symptoms? Unrealistic user
models can easily cause symptoms that
simply would not occur in production.
Arrival rates are the most commonly
exaggerated part of user models.

What were other users doing before and
during the appearance of the symptoms?
Often there is a single trigger event that
causes the bottleneck, and finding it
can be quite challenging.

What data did you use to create the symp-
toms? Sometimes something as seem-
ingly innocent as the distribution of
users can cause bottlenecks.

What was the value of a particular meas-
urement? No matter how much infor-
mation you have, there is always some-
thing else that will help the developers.

Can you re-execule that test and tell me
if... 2 Always be ready to modify your
parameters and run the test again.

After presenting your findings and
determining what other information
the developers will need to help them
resolve the issue, the next step is to
design tests that will produce the infor-
mation the developers are looking for.

When you’re designing the tests,
don’t worry about how you’ll develop
them with the tools you have available.
Thinking about the capabilities of the
tools at your disposal while designing
will almost always lead you down the
road of designing tests that are easy to
implement, instead of tests that will
provide immediate value. Instead, ask
yourself “what if” questions. For exam-
ple: “What would happen to these
symptoms if I eliminated all other user
activity? If I added more user activity?
If T used different data? If I changed
the load characteristics? If I tested
from multiple IP addresses? If I used
a different navigation path to get to
this activity?”

It is also generally useful to ask
developers to speculate as to what
kind of test they think will generate
results that will be most useful to
them. Of course, while you are asking
yourself and the developers these
questions, remember to continue eval-
uating objects with slow responses,
and think in terms of distinguishing

MAY 2005

failures, slow spots and bottlenecks
from one another.

Armed with the answers to these
questions, we can now get to the heart
of the matter. How do you build tests to
collect this next level of information
using the tools you have? Unfortunately,
there’s no cookbook answer. Every piece
of information is found in a different
way, and even that changes from appli-
cation to application, platform to plat-
form, and development style to devel-
opment style. As it turns out, there are
several directions you can follow. You
can modify existing tests, create new tests
with the same tool, create new tests with
a different tool, or use test harnesses
in combination with either the same or
different tools.

I’ve seen and taken part in lots of
debates about just what a test harness
is. Let’s agree that for our purposes,
the term “test harness” means any
helper application or application mod-
ification created for the purpose of
making it easier to use the tool or tools
at your disposal to collect information
about a performance issue.

Test harnesses can be used in many
situations. For instance, a simple Web
page with an input box and a Submit
button that connects to the database,
but bypasses the rest of the applica-
tion, is a powerful tool. In this case,
you could record a script that passes
in various SQL statements and record
the response time. This test harness
will allow you to quickly eliminate the
database as the cause of the issue with-
out having to go through the whole
battery of tests.

It’s unlikely that you'll be the one
developing test harnesses. You’ll have
to work closely with your development
staff to create them. You should con-
sider having test harnesses built when-
ever you can’t find another way to iso-
late a piece of information, even if it
seems like you should be able to do
this using your other tools. Often,
once you start discussing test har-
nesses with your developers, they’ll
come up with ideas for test harnesses
that will provide performance infor-
mation they otherwise wouldn’t be
able to obtain easily.

Is It Time to Tune?
More times than I would have thought,

MAY 2005

PERFORMANCE TUNING

when I report bottleneck suspects,
someone in the room responds,
“Oops. I know what that is. Scott, I'll
call you in a few hours and ask you to
rerun your tests. I’'m pretty sure this
will be fixed.”

As far as I'm concerned as a per-
formance tester, this is the ideal situa-
tion. Nine times out of ten I go back to
my desk and work on something else
for an hour or two, the developer calls,
I'rerun the test, and that suspected per-
formance issue is gone.

The truth is, while you’re reporting
the symptoms of suspected performance
issues, you’ll generally find yourself
engaged in conversations about the
cause of the symptoms. If there’s con-
sensus as to both the cause of the symp-
toms and how the problem might be
resolved, the attempt should be made to
resolve it (that is, to tune) immediately.
If either the cause or the resolution is
unclear, you’ll want to continue modi-
fying tests, exploiting and researching.

Teamwork Pays Off

Now that we’ve discussed detecting
performance suspects, distinguishing
between failures, slow spots and bot-
tlenecks, and how to start tracking
down performance bottlenecks to a
level of detail great enough for devel-
opers to tune them, I'd like to reem-
phasize the importance of increasing
your level of interaction with the devel-
opment team. Without a good rela-
tionship with the development team,
it’s unlikely that you’ll ever be certain
of anything more concrete than sus-
pects, symptoms and hunches. By
working closely together, you and your
development team should be able to
detect and tune bottlenecks quickly
and efficiently.

In the next issue of Software Test &
Performance, we’ll go on to discuss
the activity that occurs between the
time you determine that there is a per-
formance bottleneck (bottleneck de-
tection) and it gets tuned (bottleneck
resolution). In this activity, our goal is
to work with the tuners to provide
them with the information they need
to do their job effectively, thus mini-
mizing the often agonizing trial-and-
error process that is commonly a huge
time sink during the testing and tun-
ing process. X

Test earlier. Test faster.
Automate smarter.

TestArchitect™ 2

A B

"

12 [TEST CASE INV-01

13 |test requirement TR-001

14 |test requirement TR-002

15 |test requirement TR-003

16 |test requirement TR-004

17

18 |section Enter Produ
19 Number

20 |add product 12345678
21 |add product 43210987
Options

GUI tree [double-click an element to mark funmar
% "windows

=8

= clazs: button

+ ADD [Add A ltem')
+ UFDATE [Update &n ltem’]
+ END [End]
=@ class: checkbox
AUTO [Checkl!)
=@ class: combobox
+ PRODUCTS [‘combobox1']

Advanced Software QA
* test design
* test automation
* test management

Automation that is
* maintainable
* scaleable
* reusable

Global management
* shared repository
« distributed teams

TestArchitect is for
* Business Analysts
* Test Engineers
» Automation Engineers
* Build Engineers
* Managers and Leads

Download evaluation
copy and whitepaper

LogiGear .

Tel +1 800 322 0333

Fax +1 650 572 2822

sales@logigear.com
www.logigear.com

www.stpmag.com ¢ 29

